Medical Image Segmentation via Unsupervised Convolutional Neural Network
- URL: http://arxiv.org/abs/2001.10155v4
- Date: Mon, 6 Jul 2020 16:09:09 GMT
- Title: Medical Image Segmentation via Unsupervised Convolutional Neural Network
- Authors: Junyu Chen, Eric C. Frey
- Abstract summary: We present a novel learning-based segmentation model that could be trained semi- or un- supervised.
We parameterize the Active contour without edges (ACWE) framework via a convolutional neural network (ConvNet)
We show that the method provides fast and high-quality bone segmentation in the context of single-photon emission computed tomography (SPECT) image.
- Score: 1.6396833577035679
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For the majority of the learning-based segmentation methods, a large quantity
of high-quality training data is required. In this paper, we present a novel
learning-based segmentation model that could be trained semi- or un-
supervised. Specifically, in the unsupervised setting, we parameterize the
Active contour without edges (ACWE) framework via a convolutional neural
network (ConvNet), and optimize the parameters of the ConvNet using a
self-supervised method. In another setting (semi-supervised), the auxiliary
segmentation ground truth is used during training. We show that the method
provides fast and high-quality bone segmentation in the context of
single-photon emission computed tomography (SPECT) image.
Related papers
- Unsupervised Segmentation of Fetal Brain MRI using Deep Learning
Cascaded Registration [2.494736313545503]
Traditional deep learning-based automatic segmentation requires extensive training data with ground-truth labels.
We propose a novel method based on multi-atlas segmentation, that accurately segments multiple tissues without relying on labeled data for training.
Our method employs a cascaded deep learning network for 3D image registration, which computes small, incremental deformations to the moving image to align it precisely with the fixed image.
arXiv Detail & Related papers (2023-07-07T13:17:12Z) - Distilling Ensemble of Explanations for Weakly-Supervised Pre-Training
of Image Segmentation Models [54.49581189337848]
We propose a method to enable the end-to-end pre-training for image segmentation models based on classification datasets.
The proposed method leverages a weighted segmentation learning procedure to pre-train the segmentation network en masse.
Experiment results show that, with ImageNet accompanied by PSSL as the source dataset, the proposed end-to-end pre-training strategy successfully boosts the performance of various segmentation models.
arXiv Detail & Related papers (2022-07-04T13:02:32Z) - Adaptive Convolutional Dictionary Network for CT Metal Artifact
Reduction [62.691996239590125]
We propose an adaptive convolutional dictionary network (ACDNet) for metal artifact reduction.
Our ACDNet can automatically learn the prior for artifact-free CT images via training data and adaptively adjust the representation kernels for each input CT image.
Our method inherits the clear interpretability of model-based methods and maintains the powerful representation ability of learning-based methods.
arXiv Detail & Related papers (2022-05-16T06:49:36Z) - Weakly-supervised fire segmentation by visualizing intermediate CNN
layers [82.75113406937194]
Fire localization in images and videos is an important step for an autonomous system to combat fire incidents.
We consider weakly supervised segmentation of fire in images, in which only image labels are used to train the network.
We show that in the case of fire segmentation, which is a binary segmentation problem, the mean value of features in a mid-layer of classification CNN can perform better than conventional Class Activation Mapping (CAM) method.
arXiv Detail & Related papers (2021-11-16T11:56:28Z) - Learning Fuzzy Clustering for SPECT/CT Segmentation via Convolutional
Neural Networks [5.3123694982708365]
Quantitative bone single-photon emission computed tomography (QBSPECT) has the potential to provide a better quantitative assessment of bone metastasis than planar bone scintigraphy.
The segmentation of anatomical regions-of-interests (ROIs) still relies heavily on the manual delineation by experts.
This work proposes a fast and robust automated segmentation method for partitioning a QBSPECT image into lesion, bone, and background.
arXiv Detail & Related papers (2021-04-17T19:03:52Z) - Uncertainty guided semi-supervised segmentation of retinal layers in OCT
images [4.046207281399144]
We propose a novel uncertainty-guided semi-supervised learning based on a student-teacher approach for training the segmentation network.
The proposed framework is a key contribution and applicable for biomedical image segmentation across various imaging modalities.
arXiv Detail & Related papers (2021-03-02T23:14:25Z) - Segmenting two-dimensional structures with strided tensor networks [1.952097552284465]
We propose a novel formulation of tensor networks for supervised image segmentation.
The proposed model is end-to-end trainable using backpropagation.
The evaluation shows that the strided tensor network yields competitive performance compared to CNN-based models.
arXiv Detail & Related papers (2021-02-13T11:06:34Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
This work addresses weakly supervised semantic segmentation (WSSS), with the goal of bridging the gap between image-level annotations and pixel-level segmentation.
We formulate WSSS as a novel group-wise learning task that explicitly models semantic dependencies in a group of images to estimate more reliable pseudo ground-truths.
In particular, we devise a graph neural network (GNN) for group-wise semantic mining, wherein input images are represented as graph nodes.
arXiv Detail & Related papers (2020-12-09T12:40:13Z) - Weakly Supervised Deep Nuclei Segmentation Using Partial Points
Annotation in Histopathology Images [51.893494939675314]
We propose a novel weakly supervised segmentation framework based on partial points annotation.
We show that our method can achieve competitive performance compared to the fully supervised counterpart and the state-of-the-art methods.
arXiv Detail & Related papers (2020-07-10T15:41:29Z) - CRNet: Cross-Reference Networks for Few-Shot Segmentation [59.85183776573642]
Few-shot segmentation aims to learn a segmentation model that can be generalized to novel classes with only a few training images.
With a cross-reference mechanism, our network can better find the co-occurrent objects in the two images.
Experiments on the PASCAL VOC 2012 dataset show that our network achieves state-of-the-art performance.
arXiv Detail & Related papers (2020-03-24T04:55:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.