Learning Fuzzy Clustering for SPECT/CT Segmentation via Convolutional
Neural Networks
- URL: http://arxiv.org/abs/2104.08623v1
- Date: Sat, 17 Apr 2021 19:03:52 GMT
- Title: Learning Fuzzy Clustering for SPECT/CT Segmentation via Convolutional
Neural Networks
- Authors: Junyu Chen, Ye Li, Licia P. Luna, Hyun Woo Chung, Steven P. Rowe, Yong
Du, Lilja B.Solnes, Eric C. Frey
- Abstract summary: Quantitative bone single-photon emission computed tomography (QBSPECT) has the potential to provide a better quantitative assessment of bone metastasis than planar bone scintigraphy.
The segmentation of anatomical regions-of-interests (ROIs) still relies heavily on the manual delineation by experts.
This work proposes a fast and robust automated segmentation method for partitioning a QBSPECT image into lesion, bone, and background.
- Score: 5.3123694982708365
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantitative bone single-photon emission computed tomography (QBSPECT) has
the potential to provide a better quantitative assessment of bone metastasis
than planar bone scintigraphy due to its ability to better quantify activity in
overlapping structures. An important element of assessing response of bone
metastasis is accurate image segmentation. However, limited by the properties
of QBSPECT images, the segmentation of anatomical regions-of-interests (ROIs)
still relies heavily on the manual delineation by experts. This work proposes a
fast and robust automated segmentation method for partitioning a QBSPECT image
into lesion, bone, and background. We present a new unsupervised segmentation
loss function and its semi- and supervised variants for training a
convolutional neural network (ConvNet). The loss functions were developed based
on the objective function of the classical Fuzzy C-means (FCM) algorithm. We
conducted a comprehensive study to compare our proposed methods with ConvNets
trained using supervised loss functions and conventional clustering methods.
The Dice similarity coefficient (DSC) and several other metrics were used as
figures of merit as applied to the task of delineating lesion and bone in both
simulated and clinical SPECT/CT images. We experimentally demonstrated that the
proposed methods yielded good segmentation results on a clinical dataset even
though the training was done using realistic simulated images. A ConvNet-based
image segmentation method that uses novel loss functions was developed and
evaluated. The method can operate in unsupervised, semi-supervised, or
fully-supervised modes depending on the availability of annotated training
data. The results demonstrated that the proposed method provides fast and
robust lesion and bone segmentation for QBSPECT/CT. The method can potentially
be applied to other medical image segmentation applications.
Related papers
- CGAM: Click-Guided Attention Module for Interactive Pathology Image
Segmentation via Backpropagating Refinement [8.590026259176806]
Tumor region segmentation is an essential task for the quantitative analysis of digital pathology.
Recent deep neural networks have shown state-of-the-art performance in various image-segmentation tasks.
We propose an interactive segmentation method that allows users to refine the output of deep neural networks through click-type user interactions.
arXiv Detail & Related papers (2023-07-03T13:45:24Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - FAST-AID Brain: Fast and Accurate Segmentation Tool using Artificial
Intelligence Developed for Brain [0.8376091455761259]
A novel deep learning method is proposed for fast and accurate segmentation of the human brain into 132 regions.
The proposed model uses an efficient U-Net-like network and benefits from the intersection points of different views and hierarchical relations.
The proposed method can be applied to brain MRI data including skull or any other artifacts without preprocessing the images or a drop in performance.
arXiv Detail & Related papers (2022-08-30T16:06:07Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Mixed-UNet: Refined Class Activation Mapping for Weakly-Supervised
Semantic Segmentation with Multi-scale Inference [28.409679398886304]
We develop a novel model named Mixed-UNet, which has two parallel branches in the decoding phase.
We evaluate the designed Mixed-UNet against several prevalent deep learning-based segmentation approaches on our dataset collected from the local hospital and public datasets.
arXiv Detail & Related papers (2022-05-06T08:37:02Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Uncertainty guided semi-supervised segmentation of retinal layers in OCT
images [4.046207281399144]
We propose a novel uncertainty-guided semi-supervised learning based on a student-teacher approach for training the segmentation network.
The proposed framework is a key contribution and applicable for biomedical image segmentation across various imaging modalities.
arXiv Detail & Related papers (2021-03-02T23:14:25Z) - Boosting Segmentation Performance across datasets using histogram
specification with application to pelvic bone segmentation [1.3750624267664155]
We propose a methodology based on modulation of image tonal distributions and deep learning to boost the performance of networks trained on limited data.
The segmentation task uses a U-Net configuration with an EfficientNet-B0 backbone, optimized using an augmented BCE-IoU loss function.
arXiv Detail & Related papers (2021-01-26T23:48:40Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.