Adversarial Incremental Learning
- URL: http://arxiv.org/abs/2001.11152v2
- Date: Mon, 3 Feb 2020 17:30:22 GMT
- Title: Adversarial Incremental Learning
- Authors: Ankur Singh
- Abstract summary: Deep learning can forget previously learned information upon learning new tasks where previous data is not available.
We propose an adversarial discriminator based method that does not make use of old data at all while training on new tasks.
We are able to outperform other state-of-the-art methods on CIFAR-100, SVHN, and MNIST datasets.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although deep learning performs really well in a wide variety of tasks, it
still suffers from catastrophic forgetting -- the tendency of neural networks
to forget previously learned information upon learning new tasks where previous
data is not available. Earlier methods of incremental learning tackle this
problem by either using a part of the old dataset, by generating exemplars or
by using memory networks. Although, these methods have shown good results but
using exemplars or generating them, increases memory and computation
requirements. To solve these problems we propose an adversarial discriminator
based method that does not make use of old data at all while training on new
tasks. We particularly tackle the class incremental learning problem in image
classification, where data is provided in a class-based sequential manner. For
this problem, the network is trained using an adversarial loss along with the
traditional cross-entropy loss. The cross-entropy loss helps the network
progressively learn new classes while the adversarial loss helps in preserving
information about the existing classes. Using this approach, we are able to
outperform other state-of-the-art methods on CIFAR-100, SVHN, and MNIST
datasets.
Related papers
- Enhancing Consistency and Mitigating Bias: A Data Replay Approach for
Incremental Learning [100.7407460674153]
Deep learning systems are prone to catastrophic forgetting when learning from a sequence of tasks.
To mitigate the problem, a line of methods propose to replay the data of experienced tasks when learning new tasks.
However, it is not expected in practice considering the memory constraint or data privacy issue.
As a replacement, data-free data replay methods are proposed by inverting samples from the classification model.
arXiv Detail & Related papers (2024-01-12T12:51:12Z) - Negotiated Representations to Prevent Forgetting in Machine Learning
Applications [0.0]
Catastrophic forgetting is a significant challenge in the field of machine learning.
We propose a novel method for preventing catastrophic forgetting in machine learning applications.
arXiv Detail & Related papers (2023-11-30T22:43:50Z) - A Memory Transformer Network for Incremental Learning [64.0410375349852]
We study class-incremental learning, a training setup in which new classes of data are observed over time for the model to learn from.
Despite the straightforward problem formulation, the naive application of classification models to class-incremental learning results in the "catastrophic forgetting" of previously seen classes.
One of the most successful existing methods has been the use of a memory of exemplars, which overcomes the issue of catastrophic forgetting by saving a subset of past data into a memory bank and utilizing it to prevent forgetting when training future tasks.
arXiv Detail & Related papers (2022-10-10T08:27:28Z) - Transfer Learning via Test-Time Neural Networks Aggregation [11.42582922543676]
It has been demonstrated that deep neural networks outperform traditional machine learning.
Deep networks lack generalisability, that is, they will not perform as good as in a new (testing) set drawn from a different distribution.
arXiv Detail & Related papers (2022-06-27T15:46:05Z) - Explain to Not Forget: Defending Against Catastrophic Forgetting with
XAI [10.374979214803805]
Catastrophic forgetting describes the phenomenon when a neural network completely forgets previous knowledge when given new information.
We propose a novel training algorithm called training by explaining in which we leverage Layer-wise Relevance propagation in order to retain the information a neural network has already learned in previous tasks when training on new data.
Our method not only successfully retains the knowledge of old tasks within the neural networks but does so more resource-efficiently than other state-of-the-art solutions.
arXiv Detail & Related papers (2022-05-04T08:00:49Z) - On Generalizing Beyond Domains in Cross-Domain Continual Learning [91.56748415975683]
Deep neural networks often suffer from catastrophic forgetting of previously learned knowledge after learning a new task.
Our proposed approach learns new tasks under domain shift with accuracy boosts up to 10% on challenging datasets such as DomainNet and OfficeHome.
arXiv Detail & Related papers (2022-03-08T09:57:48Z) - Reducing Catastrophic Forgetting in Self Organizing Maps with
Internally-Induced Generative Replay [67.50637511633212]
A lifelong learning agent is able to continually learn from potentially infinite streams of pattern sensory data.
One major historic difficulty in building agents that adapt is that neural systems struggle to retain previously-acquired knowledge when learning from new samples.
This problem is known as catastrophic forgetting (interference) and remains an unsolved problem in the domain of machine learning to this day.
arXiv Detail & Related papers (2021-12-09T07:11:14Z) - Center Loss Regularization for Continual Learning [0.0]
In general, neural networks lack the ability to learn different tasks sequentially.
Our approach remembers old tasks by projecting the representations of new tasks close to that of old tasks.
We demonstrate that our approach is scalable, effective, and gives competitive performance compared to state-of-the-art continual learning methods.
arXiv Detail & Related papers (2021-10-21T17:46:44Z) - Incremental Embedding Learning via Zero-Shot Translation [65.94349068508863]
Current state-of-the-art incremental learning methods tackle catastrophic forgetting problem in traditional classification networks.
We propose a novel class-incremental method for embedding network, named as zero-shot translation class-incremental method (ZSTCI)
In addition, ZSTCI can easily be combined with existing regularization-based incremental learning methods to further improve performance of embedding networks.
arXiv Detail & Related papers (2020-12-31T08:21:37Z) - Self-Supervised Learning Aided Class-Incremental Lifelong Learning [17.151579393716958]
We study the issue of catastrophic forgetting in class-incremental learning (Class-IL)
In training procedure of Class-IL, as the model has no knowledge about following tasks, it would only extract features necessary for tasks learned so far, whose information is insufficient for joint classification.
We propose to combine self-supervised learning, which can provide effective representations without requiring labels, with Class-IL to partly get around this problem.
arXiv Detail & Related papers (2020-06-10T15:15:27Z) - Semantic Drift Compensation for Class-Incremental Learning [48.749630494026086]
Class-incremental learning of deep networks sequentially increases the number of classes to be classified.
We propose a new method to estimate the drift, called semantic drift, of features and compensate for it without the need of any exemplars.
arXiv Detail & Related papers (2020-04-01T13:31:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.