Center Loss Regularization for Continual Learning
- URL: http://arxiv.org/abs/2110.11314v1
- Date: Thu, 21 Oct 2021 17:46:44 GMT
- Title: Center Loss Regularization for Continual Learning
- Authors: Kaustubh Olpadkar and Ekta Gavas
- Abstract summary: In general, neural networks lack the ability to learn different tasks sequentially.
Our approach remembers old tasks by projecting the representations of new tasks close to that of old tasks.
We demonstrate that our approach is scalable, effective, and gives competitive performance compared to state-of-the-art continual learning methods.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ability to learn different tasks sequentially is essential to the
development of artificial intelligence. In general, neural networks lack this
capability, the major obstacle being catastrophic forgetting. It occurs when
the incrementally available information from non-stationary data distributions
is continually acquired, disrupting what the model has already learned. Our
approach remembers old tasks by projecting the representations of new tasks
close to that of old tasks while keeping the decision boundaries unchanged. We
employ the center loss as a regularization penalty that enforces new tasks'
features to have the same class centers as old tasks and makes the features
highly discriminative. This, in turn, leads to the least forgetting of already
learned information. This method is easy to implement, requires minimal
computational and memory overhead, and allows the neural network to maintain
high performance across many sequentially encountered tasks. We also
demonstrate that using the center loss in conjunction with the memory replay
outperforms other replay-based strategies. Along with standard MNIST variants
for continual learning, we apply our method to continual domain adaptation
scenarios with the Digits and PACS datasets. We demonstrate that our approach
is scalable, effective, and gives competitive performance compared to
state-of-the-art continual learning methods.
Related papers
- Mind the Interference: Retaining Pre-trained Knowledge in Parameter Efficient Continual Learning of Vision-Language Models [79.28821338925947]
Domain-Class Incremental Learning is a realistic but challenging continual learning scenario.
To handle these diverse tasks, pre-trained Vision-Language Models (VLMs) are introduced for their strong generalizability.
This incurs a new problem: the knowledge encoded in the pre-trained VLMs may be disturbed when adapting to new tasks, compromising their inherent zero-shot ability.
Existing methods tackle it by tuning VLMs with knowledge distillation on extra datasets, which demands heavy overhead.
We propose the Distribution-aware Interference-free Knowledge Integration (DIKI) framework, retaining pre-trained knowledge of
arXiv Detail & Related papers (2024-07-07T12:19:37Z) - Negotiated Representations to Prevent Forgetting in Machine Learning
Applications [0.0]
Catastrophic forgetting is a significant challenge in the field of machine learning.
We propose a novel method for preventing catastrophic forgetting in machine learning applications.
arXiv Detail & Related papers (2023-11-30T22:43:50Z) - Look-Ahead Selective Plasticity for Continual Learning of Visual Tasks [9.82510084910641]
We propose a new mechanism that takes place during task boundaries, i.e., when one task finishes and another starts.
We evaluate the proposed methods on benchmark computer vision datasets including CIFAR10 and TinyImagenet.
arXiv Detail & Related papers (2023-11-02T22:00:23Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
Continual learning seeks to overcome the challenge of catastrophic forgetting, where a model forgets previously learnt information.
We introduce a novel prior-based method that better constrains parameter growth, reducing catastrophic forgetting.
Results show that BAdam achieves state-of-the-art performance for prior-based methods on challenging single-headed class-incremental experiments.
arXiv Detail & Related papers (2023-09-15T17:10:51Z) - Complementary Learning Subnetworks for Parameter-Efficient
Class-Incremental Learning [40.13416912075668]
We propose a rehearsal-free CIL approach that learns continually via the synergy between two Complementary Learning Subnetworks.
Our method achieves competitive results against state-of-the-art methods, especially in accuracy gain, memory cost, training efficiency, and task-order.
arXiv Detail & Related papers (2023-06-21T01:43:25Z) - On Generalizing Beyond Domains in Cross-Domain Continual Learning [91.56748415975683]
Deep neural networks often suffer from catastrophic forgetting of previously learned knowledge after learning a new task.
Our proposed approach learns new tasks under domain shift with accuracy boosts up to 10% on challenging datasets such as DomainNet and OfficeHome.
arXiv Detail & Related papers (2022-03-08T09:57:48Z) - Learning Bayesian Sparse Networks with Full Experience Replay for
Continual Learning [54.7584721943286]
Continual Learning (CL) methods aim to enable machine learning models to learn new tasks without catastrophic forgetting of those that have been previously mastered.
Existing CL approaches often keep a buffer of previously-seen samples, perform knowledge distillation, or use regularization techniques towards this goal.
We propose to only activate and select sparse neurons for learning current and past tasks at any stage.
arXiv Detail & Related papers (2022-02-21T13:25:03Z) - Reducing Catastrophic Forgetting in Self Organizing Maps with
Internally-Induced Generative Replay [67.50637511633212]
A lifelong learning agent is able to continually learn from potentially infinite streams of pattern sensory data.
One major historic difficulty in building agents that adapt is that neural systems struggle to retain previously-acquired knowledge when learning from new samples.
This problem is known as catastrophic forgetting (interference) and remains an unsolved problem in the domain of machine learning to this day.
arXiv Detail & Related papers (2021-12-09T07:11:14Z) - Gradient Projection Memory for Continual Learning [5.43185002439223]
The ability to learn continually without forgetting the past tasks is a desired attribute for artificial learning systems.
We propose a novel approach where a neural network learns new tasks by taking gradient steps in the orthogonal direction to the gradient subspaces deemed important for the past tasks.
arXiv Detail & Related papers (2021-03-17T16:31:29Z) - Neuromodulated Neural Architectures with Local Error Signals for
Memory-Constrained Online Continual Learning [4.2903672492917755]
We develop a biologically-inspired light weight neural network architecture that incorporates local learning and neuromodulation.
We demonstrate the efficacy of our approach on both single task and continual learning setting.
arXiv Detail & Related papers (2020-07-16T07:41:23Z) - Continual Deep Learning by Functional Regularisation of Memorable Past [95.97578574330934]
Continually learning new skills is important for intelligent systems, yet standard deep learning methods suffer from catastrophic forgetting of the past.
We propose a new functional-regularisation approach that utilises a few memorable past examples crucial to avoid forgetting.
Our method achieves state-of-the-art performance on standard benchmarks and opens a new direction for life-long learning where regularisation and memory-based methods are naturally combined.
arXiv Detail & Related papers (2020-04-29T10:47:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.