論文の概要: A CNN With Multi-scale Convolution for Hyperspectral Image
Classification using Target-Pixel-Orientation scheme
- arxiv url: http://arxiv.org/abs/2001.11198v3
- Date: Wed, 5 May 2021 14:28:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-05 12:20:31.782290
- Title: A CNN With Multi-scale Convolution for Hyperspectral Image
Classification using Target-Pixel-Orientation scheme
- Title(参考訳): マルチスケールコンボリューションを用いたターゲットカメラ指向方式によるハイパースペクトル画像分類
- Authors: Jayasree Saha, Yuvraj Khanna, Jayanta Mukherjee
- Abstract要約: CNNは、ハイパースペクトル画像分類の課題に対処する一般的な選択肢である。
本稿では,CNNベースのネットワークをトレーニングするために,新たなターゲットパッチ指向手法を提案する。
また、3D-CNNと2D-CNNベースのネットワークアーキテクチャのハイブリッドを導入し、帯域削減と特徴抽出手法を実装した。
- 参考スコア(独自算出の注目度): 2.094821665776961
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recently, CNN is a popular choice to handle the hyperspectral image
classification challenges. In spite of having such large spectral information
in Hyper-Spectral Image(s) (HSI), it creates a curse of dimensionality. Also,
large spatial variability of spectral signature adds more difficulty in
classification problem. Additionally, training a CNN in the end to end fashion
with scarced training examples is another challenging and interesting problem.
In this paper, a novel target-patch-orientation method is proposed to train a
CNN based network. Also, we have introduced a hybrid of 3D-CNN and 2D-CNN based
network architecture to implement band reduction and feature extraction
methods, respectively. Experimental results show that our method outperforms
the accuracies reported in the existing state of the art methods.
- Abstract(参考訳): 近年、CNNはハイパースペクトル画像分類の課題に対処するために人気がある。
ハイパースペクトル画像(HSI)にそのようなスペクトル情報があるにもかかわらず、次元性の呪いを生み出す。
また、スペクトルシグネチャの空間的な大きな変動は分類問題にさらに困難をもたらす。
さらに、トレーニングサンプルの不足によるエンドツーエンドでのCNNのトレーニングも、難しくて興味深い問題です。
本稿では,CNNベースのネットワークをトレーニングするために,新たなターゲットパッチ指向手法を提案する。
また、3D-CNNと2D-CNNベースのネットワークアーキテクチャのハイブリッドを導入し、帯域削減法と特徴抽出法を実装した。
実験の結果,本手法は既存の工法で報告された精度よりも優れていた。
関連論文リスト
- CNN2GNN: How to Bridge CNN with GNN [59.42117676779735]
蒸留によりCNNとGNNを統一する新しいCNN2GNNフレームワークを提案する。
Mini-ImageNetにおける蒸留ブースターの2層GNNの性能は、ResNet152のような数十層を含むCNNよりもはるかに高い。
論文 参考訳(メタデータ) (2024-04-23T08:19:08Z) - A heterogeneous group CNN for image super-resolution [127.2132400582117]
畳み込みニューラルネットワーク(CNN)は、深いアーキテクチャを通して顕著な性能を得た。
異種グループSR CNN(HGSRCNN)を,異なるタイプの構造情報を利用して高品質な画像を得る。
論文 参考訳(メタデータ) (2022-09-26T04:14:59Z) - SpectralNET: Exploring Spatial-Spectral WaveletCNN for Hyperspectral
Image Classification [0.0]
畳み込みニューラルネットワーク(CNN)を用いたハイパースペクトル画像(HSI)分類は,現在の文献に広く見られる。
マルチ解像度HSI分類のための2次元CNNのバリエーションであるウェーブレットCNNであるSpectralNETを提案する。
論文 参考訳(メタデータ) (2021-04-01T08:45:15Z) - The Mind's Eye: Visualizing Class-Agnostic Features of CNNs [92.39082696657874]
本稿では,特定のレイヤの最も情報性の高い特徴を表現した対応する画像を作成することにより,画像の集合を視覚的に解釈する手法を提案する。
本手法では, 生成ネットワークを必要とせず, 元のモデルに変更を加えることなく, デュアルオブジェクトのアクティベーションと距離損失を利用する。
論文 参考訳(メタデータ) (2021-01-29T07:46:39Z) - Hyperspectral Image Classification: Artifacts of Dimension Reduction on
Hybrid CNN [1.2875323263074796]
2Dおよび3DCNNモデルは、ハイパースペクトル画像の空間的およびスペクトル情報を利用するのに非常に効率的であることが証明されている。
この研究は、計算コストを大幅に削減する軽量CNN(3Dと2D-CNN)モデルを提案した。
論文 参考訳(メタデータ) (2021-01-25T18:43:57Z) - Learning Hybrid Representations for Automatic 3D Vessel Centerline
Extraction [57.74609918453932]
3次元医用画像からの血管の自動抽出は血管疾患の診断に不可欠である。
既存の方法では、3次元画像からそのような細い管状構造を分割する際に、抽出された容器の不連続に悩まされることがある。
抽出された船舶の連続性を維持するためには、地球的幾何学を考慮に入れる必要があると論じる。
この課題を解決するためのハイブリッド表現学習手法を提案します。
論文 参考訳(メタデータ) (2020-12-14T05:22:49Z) - Convolutional Neural Networks for Multispectral Image Cloud Masking [7.812073412066698]
畳み込みニューラルネットワーク(CNN)は多くの画像分類タスクの最先端技術であることが証明されている。
Proba-Vマルチスペクトル画像のクラウドマスキングにおける異なるCNNアーキテクチャの利用について検討する。
論文 参考訳(メタデータ) (2020-12-09T21:33:20Z) - Learning CNN filters from user-drawn image markers for coconut-tree
image classification [78.42152902652215]
本稿では,CNNの特徴抽出器を訓練するために,最小限のユーザ選択画像を必要とする手法を提案する。
本手法は,クラスを識別する画像領域のユーザ描画マーカーから,各畳み込み層のフィルタを学習する。
バックプロパゲーションに基づく最適化には依存せず、ココナッツツリー空中画像のバイナリ分類にその利点を実証する。
論文 参考訳(メタデータ) (2020-08-08T15:50:23Z) - Hyperspectral Image Classification with Attention Aided CNNs [33.82700423556775]
ハイパースペクトル画像のスペクトル空間分類のための注意支援型CNNモデルを提案する。
提案手法は, 最先端CNN関連モデルと比較して, 優れた性能が得られる。
論文 参考訳(メタデータ) (2020-05-25T08:40:56Z) - Curriculum By Smoothing [52.08553521577014]
畳み込みニューラルネットワーク(CNN)は、画像分類、検出、セグメンテーションなどのコンピュータビジョンタスクにおいて顕著な性能を示している。
アンチエイリアスフィルタやローパスフィルタを用いてCNNの機能埋め込みを円滑化するエレガントなカリキュラムベースのスキームを提案する。
トレーニング中に特徴マップ内の情報量が増加するにつれて、ネットワークはデータのより優れた表現を徐々に学習することができる。
論文 参考訳(メタデータ) (2020-03-03T07:27:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。