論文の概要: Data Mining in Clinical Trial Text: Transformers for Classification and
Question Answering Tasks
- arxiv url: http://arxiv.org/abs/2001.11268v1
- Date: Thu, 30 Jan 2020 11:45:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-05 11:36:47.841298
- Title: Data Mining in Clinical Trial Text: Transformers for Classification and
Question Answering Tasks
- Title(参考訳): 臨床試験テキストにおけるデータマイニング:分類と質問応答のためのトランスフォーマー
- Authors: Lena Schmidt, Julie Weeds, Julian P. T. Higgins
- Abstract要約: 本研究は,医学的テキストに基づくエビデンス合成に自然言語処理の進歩を適用した。
主な焦点は、Population、Intervention、Comparator、Outcome(PICO)フレームワークを通じて特徴づけられる情報である。
トランスフォーマーに基づく最近のニューラルネットワークアーキテクチャは、トランスファーラーニングの能力を示し、下流の自然言語処理タスクのパフォーマンスが向上している。
- 参考スコア(独自算出の注目度): 2.127049691404299
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This research on data extraction methods applies recent advances in natural
language processing to evidence synthesis based on medical texts. Texts of
interest include abstracts of clinical trials in English and in multilingual
contexts. The main focus is on information characterized via the Population,
Intervention, Comparator, and Outcome (PICO) framework, but data extraction is
not limited to these fields. Recent neural network architectures based on
transformers show capacities for transfer learning and increased performance on
downstream natural language processing tasks such as universal reading
comprehension, brought forward by this architecture's use of contextualized
word embeddings and self-attention mechanisms. This paper contributes to
solving problems related to ambiguity in PICO sentence prediction tasks, as
well as highlighting how annotations for training named entity recognition
systems are used to train a high-performing, but nevertheless flexible
architecture for question answering in systematic review automation.
Additionally, it demonstrates how the problem of insufficient amounts of
training annotations for PICO entity extraction is tackled by augmentation. All
models in this paper were created with the aim to support systematic review
(semi)automation. They achieve high F1 scores, and demonstrate the feasibility
of applying transformer-based classification methods to support data mining in
the biomedical literature.
- Abstract(参考訳): 本研究は,最近の自然言語処理の進歩を医学文献に基づくエビデンス合成に適用する。
興味のあるテキストには、英語および多言語文脈における臨床試験の要約が含まれる。
主な焦点は、Population、Intervention、Comparator、Outcome(PICO)フレームワークによって特徴づけられる情報であるが、データ抽出はこれらの分野に限定されていない。
トランスフォーマーをベースとした最近のニューラルネットワークアーキテクチャは、文脈化された単語埋め込みと自己認識機構の使用により、伝達学習の能力を示し、普遍的な読解のような下流自然言語処理タスクのパフォーマンスが向上している。
本稿では,PICO文予測タスクにおける曖昧性に関連する問題の解決に寄与し,体系的レビュー自動化において,ハイパフォーマンスでフレキシブルなアーキテクチャをトレーニングするために,名前付きエンティティ認識システムのアノテーションがどのように使われているかを強調した。
さらに,PICOエンティティ抽出のためのトレーニングアノテーションの不足が,拡張によってどのように対処されるかを示す。
本論文のすべてのモデルは,体系的レビュー(semi)自動化を支援する目的で作成された。
彼らは高いF1スコアを達成し、バイオメディカル文献におけるデータマイニングを支援するためにトランスフォーマーベースの分類手法の適用可能性を示した。
関連論文リスト
- Likelihood as a Performance Gauge for Retrieval-Augmented Generation [78.28197013467157]
言語モデルの性能の効果的な指標としての可能性を示す。
提案手法は,より優れた性能をもたらすプロンプトの選択と構築のための尺度として,疑似可能性を利用する2つの手法を提案する。
論文 参考訳(メタデータ) (2024-11-12T13:14:09Z) - Integrating curation into scientific publishing to train AI models [1.6982459897303823]
我々は,複数モーダルデータキュレーションを学術出版プロセスに組み込んで,セグメント化された図形パネルやキャプションに注釈を付ける。
SourceData-NLPというデータセットには、620,000以上の注釈付きバイオメディカルエンティティが含まれている。
我々は、名前付き認識、図形キャプションを構成パネルに分割すること、コンテキスト依存型セマンティックタスクを用いて、AIモデルをトレーニングするためのデータセットの有用性を評価する。
論文 参考訳(メタデータ) (2023-10-31T13:22:38Z) - UMLS-KGI-BERT: Data-Centric Knowledge Integration in Transformers for
Biomedical Entity Recognition [4.865221751784403]
この研究は、UMLSからテキストシーケンスを抽出することにより、バイオメディカルトランスフォーマーエンコーダLMの言語表現を強化するためのデータ中心パラダイムに寄与する。
予め訓練したLMの拡張およびスクラッチからのトレーニングによる実験の結果から,複数の生物医学的,臨床的な名前付きエンティティ認識(NER)タスクにおける下流性能の向上が示された。
論文 参考訳(メタデータ) (2023-07-20T18:08:34Z) - Cross-lingual Argument Mining in the Medical Domain [6.0158981171030685]
注釈付きデータがない医療用テキストでArgument Mining(AM)を実行する方法を示す。
我々の研究は、アノテーション(データ転送)を英語から特定のターゲット言語に自動翻訳・投影することは、注釈付きデータを生成する効果的な方法であることを示している。
また、スペイン語で自動生成されたデータを用いて、元の英語単言語設定の結果を改善する方法も示す。
論文 参考訳(メタデータ) (2023-01-25T11:21:12Z) - Multilingual Extraction and Categorization of Lexical Collocations with
Graph-aware Transformers [86.64972552583941]
我々は,グラフ対応トランスフォーマアーキテクチャにより拡張されたBERTに基づくシーケンスタグ付けモデルを提案し,コンテキストにおけるコロケーション認識の課題について評価した。
以上の結果から, モデルアーキテクチャにおける構文的依存関係を明示的に符号化することは有用であり, 英語, スペイン語, フランス語におけるコロケーションのタイプ化の差異について考察する。
論文 参考訳(メタデータ) (2022-05-23T16:47:37Z) - Automated tabulation of clinical trial results: A joint entity and
relation extraction approach with transformer-based language representations [5.825190876052148]
本稿では,2つの言語処理タスク間で問題を分解し,エビデンス表の自動生成について検討する。
本稿では,実践成果を報告するRCT要約文の自動集計に着目する。
これらのモデルを訓練し、試験するために、6つの疾患領域から600近い結果文を含む新しいゴールドスタンダードコーパスが開発された。
論文 参考訳(メタデータ) (2021-12-10T15:26:43Z) - CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark [51.38557174322772]
中国初のバイオメディカル言語理解評価ベンチマークを提示する。
名前付きエンティティ認識、情報抽出、臨床診断正規化、単文/文対分類を含む自然言語理解タスクのコレクションである。
本研究は,現在の11種類の中国モデルによる実験結果について報告し,その実験結果から,現在最先端のニューラルモデルがヒトの天井よりもはるかに悪い性能を示すことが示された。
論文 参考訳(メタデータ) (2021-06-15T12:25:30Z) - PharmKE: Knowledge Extraction Platform for Pharmaceutical Texts using
Transfer Learning [0.0]
PharmKEは、医薬品のセマンティック分析を徹底するために、いくつかの段階を通じてディープラーニングを適用するテキスト分析プラットフォームです。
この方法論は、正確なラベル付きトレーニングとテストデータセットの作成に使用され、カスタムエンティティラベリングタスクのモデルトレーニングに使用されます。
得られた結果は、同じデータセットで訓練された微調整BERTおよびBioBERTモデルと比較されます。
論文 参考訳(メタデータ) (2021-02-25T19:36:35Z) - Curious Case of Language Generation Evaluation Metrics: A Cautionary
Tale [52.663117551150954]
イメージキャプションや機械翻訳などのタスクを評価するデファクトメトリクスとして、いくつかの一般的な指標が残っている。
これは、使いやすさが原因でもあり、また、研究者がそれらを見て解釈する方法を知りたがっているためでもある。
本稿では,モデルの自動評価方法について,コミュニティにより慎重に検討するよう促す。
論文 参考訳(メタデータ) (2020-10-26T13:57:20Z) - ORB: An Open Reading Benchmark for Comprehensive Evaluation of Machine
Reading Comprehension [53.037401638264235]
我々は,7種類の読解データセットの性能を報告する評価サーバORBを提案する。
評価サーバは、モデルのトレーニング方法に制限を課さないため、トレーニングパラダイムや表現学習の探索に適したテストベッドである。
論文 参考訳(メタデータ) (2019-12-29T07:27:23Z) - Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer [64.22926988297685]
下流タスクで微調整される前に、まずデータリッチタスクでモデルが事前訓練されるトランスファーラーニングは、自然言語処理(NLP)において強力な手法として登場した。
本稿では,すべてのテキストベースの言語問題をテキスト・トゥ・テキスト・フォーマットに変換する統一フレームワークにより,NLPのためのトランスファー学習手法を導入する状況について検討する。
論文 参考訳(メタデータ) (2019-10-23T17:37:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。