Bell non-locality using tensor networks and sparse recovery
- URL: http://arxiv.org/abs/2001.11455v2
- Date: Fri, 31 Jan 2020 14:17:09 GMT
- Title: Bell non-locality using tensor networks and sparse recovery
- Authors: I. S. Eli\"ens and S. G. A. Brito and R. Chaves
- Abstract summary: Bell's theorem, stating that quantum predictions are incompatible with a local hidden variable description, is a cornerstone of quantum theory.
We propose to analyse a Bell scenario as a tensor network, a perspective permitting to test and quantify non-locality.
It allows to prove that non-signalling correlations can be described by hidden variable models governed by a quasi-probability.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bell's theorem, stating that quantum predictions are incompatible with a
local hidden variable description, is a cornerstone of quantum theory and at
the center of many quantum information processing protocols. Over the years,
different perspectives on non-locality have been put forward as well as
different ways to to detect non-locality and quantify it. Unfortunately and in
spite of its relevance, as the complexity of the Bell scenario increases,
deciding whether a given observed correlation is non-local becomes
computationally intractable. Here, we propose to analyse a Bell scenario as a
tensor network, a perspective permitting to test and quantify non-locality
resorting to very efficient algorithms originating from compressed sensing and
that offer a significant speedup in comparison with standard linear programming
methods. Furthermore, it allows to prove that non-signalling correlations can
be described by hidden variable models governed by a quasi-probability.
Related papers
- Certifying activation of quantum correlations with finite data [0.0]
Quantum theory allows for different classes of correlations, such as entanglement, steerability or Bell-nonlocality.
We show how our methods can be used to analyse the activation of quantum correlations by local filtering, specifically for Bell-nonlocality and quantum steerability.
arXiv Detail & Related papers (2023-05-05T18:00:00Z) - Genuine Bell locality and nonlocality in the networks [0.0]
Local hidden variables are strictly distributed in the specific observers rather than the whole ones.
Moreors are involved in the proposed linear and non-linear Bell-type inequalities.
How entanglement swapping replaces the joint measurements in the Bell tests is demonstrated.
arXiv Detail & Related papers (2022-09-23T04:23:16Z) - Proofs of network quantum nonlocality aided by machine learning [68.8204255655161]
We show that the family of quantum triangle distributions of [DOI40103/PhysRevLett.123.140] did not admit triangle-local models in a larger range than the original proof.
We produce a large collection of network Bell inequalities for the triangle scenario with binary outcomes, which are of independent interest.
arXiv Detail & Related papers (2022-03-30T18:00:00Z) - Single-photon nonlocality in quantum networks [55.41644538483948]
We show that the nonlocality of single-photon entangled states can nevertheless be revealed in a quantum network made only of beamsplitters and photodetectors.
Our results show that single-photon entanglement may constitute a promising solution to generate genuine network-nonlocal correlations useful for Bell-based quantum information protocols.
arXiv Detail & Related papers (2021-08-03T20:13:24Z) - Quantum communication complexity beyond Bell nonlocality [87.70068711362255]
Efficient distributed computing offers a scalable strategy for solving resource-demanding tasks.
Quantum resources are well-suited to this task, offering clear strategies that can outperform classical counterparts.
We prove that a new class of communication complexity tasks can be associated to Bell-like inequalities.
arXiv Detail & Related papers (2021-06-11T18:00:09Z) - Full network nonlocality [68.8204255655161]
We introduce the concept of full network nonlocality, which describes correlations that necessitate all links in a network to distribute nonlocal resources.
We show that the most well-known network Bell test does not witness full network nonlocality.
More generally, we point out that established methods for analysing local and theory-independent correlations in networks can be combined in order to deduce sufficient conditions for full network nonlocality.
arXiv Detail & Related papers (2021-05-19T18:00:02Z) - Exploring Bell nonlocality of quantum networks with stabilizing and
logical operators [0.0]
Knowing the stabilizing and logical operators indeed provides a new way of exploring Bell non-locality in quantum networks.
For the qubit distribution in quantum networks, the associated nonlinear Bell inequalities are derived.
The tilted nonlinear Bell inequalities tailored for specific non-maximal entangled stabilizer states are also explored.
arXiv Detail & Related papers (2021-05-09T05:13:41Z) - Bell nonlocality in networks [62.997667081978825]
Bell's theorem proves that quantum theory is inconsistent with local physical models.
In the last decade, the investigation of nonlocality has moved beyond Bell's theorem to consider more sophisticated experiments.
This review discusses the main concepts, methods, results and future challenges in the emerging topic of Bell nonlocality in networks.
arXiv Detail & Related papers (2021-04-21T18:00:48Z) - Quantum Bell Nonlocality is Entanglement [10.628932392896374]
Bell nonlocality describes a manifestation of quantum mechanics that cannot be explained by any local hidden variable model.
We develop a dynamical framework in which quantum Bell nonlocality emerges as special form of entanglement.
arXiv Detail & Related papers (2020-12-12T23:02:06Z) - Unbounded Bell violations for quantum genuine multipartite non-locality [0.5156484100374058]
Bell inequalities by measurements on quantum states give rise to the phenomenon of quantum non-locality.
We show that while in the so-called correlation scenario the relative violation of bilocal Bell inequalities by quantum resources is bounded, it does not grow arbitrarily with the number of inputs.
We identify Bell functionals that take the form of non-local games for which the ratio of the quantum and bilocal values grows unboundedly as a function of the number of inputs and outputs.
arXiv Detail & Related papers (2020-02-28T09:28:27Z) - Quantum Mechanical description of Bell's experiment assumes Locality [91.3755431537592]
Bell's experiment description assumes the (Quantum Mechanics-language equivalent of the classical) condition of Locality.
This result is complementary to a recently published one demonstrating that non-Locality is necessary to describe said experiment.
It is concluded that, within the framework of Quantum Mechanics, there is absolutely no reason to believe in the existence of non-Local effects.
arXiv Detail & Related papers (2020-02-27T15:04:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.