Exploring Bell nonlocality of quantum networks with stabilizing and
logical operators
- URL: http://arxiv.org/abs/2105.03837v2
- Date: Thu, 27 May 2021 10:26:35 GMT
- Title: Exploring Bell nonlocality of quantum networks with stabilizing and
logical operators
- Authors: Li-Yi Hsu and Ching-Hsu Chen
- Abstract summary: Knowing the stabilizing and logical operators indeed provides a new way of exploring Bell non-locality in quantum networks.
For the qubit distribution in quantum networks, the associated nonlinear Bell inequalities are derived.
The tilted nonlinear Bell inequalities tailored for specific non-maximal entangled stabilizer states are also explored.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In practical quantum networks, a variety of multi-qubit stabilized states
emitted from independent sources are distributed among the agents, and the
correlations across the entire network can be derived from each agent's local
measurements on the shared composite quantum systems. To reveal the Bell
non-locality in such cases as a quantum feature, minimal knowledge of the
emitted stabilizer state is required. Here, we demonstrate that knowing the
stabilizing and logical operators indeed provides a new way of exploring Bell
non-locality in quantum networks. For the qubit distribution in quantum
networks, the associated nonlinear Bell inequalities are derived. On the other
hand, to violate these inequalities, one can design local incompatible
observables using minimal knowledge of the emitted states. The tilted nonlinear
Bell inequalities tailored for specific non-maximal entangled stabilizer states
and a way of achieving the maximal violation are also explored.
Related papers
- Nonlocality activation in a photonic quantum network [0.44270590458998854]
Bell nonlocality is crucial for device-independent technologies like quantum key distribution and randomness generation.
We show that single copies of Bell-local states can give rise to nonlocality after being embedded into a quantum network of multiple parties.
Our findings have fundamental implications for nonlocality and enable the practical use of nonlocal correlations in real-world applications.
arXiv Detail & Related papers (2023-09-12T18:14:49Z) - Hierarchical certification of nonclassical network correlations [50.32788626697182]
We derive linear and nonlinear Bell-like inequalities for networks, whose violation certifies the absence of a minimum number of classical sources in them.
We insert this assumption, which leads to results more amenable to certification in experiments.
arXiv Detail & Related papers (2023-06-27T18:00:01Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Genuine Bell locality and nonlocality in the networks [0.0]
Local hidden variables are strictly distributed in the specific observers rather than the whole ones.
Moreors are involved in the proposed linear and non-linear Bell-type inequalities.
How entanglement swapping replaces the joint measurements in the Bell tests is demonstrated.
arXiv Detail & Related papers (2022-09-23T04:23:16Z) - Single-photon nonlocality in quantum networks [55.41644538483948]
We show that the nonlocality of single-photon entangled states can nevertheless be revealed in a quantum network made only of beamsplitters and photodetectors.
Our results show that single-photon entanglement may constitute a promising solution to generate genuine network-nonlocal correlations useful for Bell-based quantum information protocols.
arXiv Detail & Related papers (2021-08-03T20:13:24Z) - Quantum communication complexity beyond Bell nonlocality [87.70068711362255]
Efficient distributed computing offers a scalable strategy for solving resource-demanding tasks.
Quantum resources are well-suited to this task, offering clear strategies that can outperform classical counterparts.
We prove that a new class of communication complexity tasks can be associated to Bell-like inequalities.
arXiv Detail & Related papers (2021-06-11T18:00:09Z) - Full network nonlocality [68.8204255655161]
We introduce the concept of full network nonlocality, which describes correlations that necessitate all links in a network to distribute nonlocal resources.
We show that the most well-known network Bell test does not witness full network nonlocality.
More generally, we point out that established methods for analysing local and theory-independent correlations in networks can be combined in order to deduce sufficient conditions for full network nonlocality.
arXiv Detail & Related papers (2021-05-19T18:00:02Z) - Transmon platform for quantum computing challenged by chaotic
fluctuations [55.41644538483948]
We investigate the stability of a variant of a many-body localized (MBL) phase for system parameters relevant to current quantum processors.
We find that these computing platforms are dangerously close to a phase of uncontrollable chaotic fluctuations.
arXiv Detail & Related papers (2020-12-10T19:00:03Z) - Maximal qubit violation of n-local inequalities in quantum network [0.0]
Source independent quantum networks are considered as a natural generalization to the Bell scenario.
We consider the complexities in the quantum networks with an arbitrary number of parties distributed in chain-shaped and star-shaped networks.
arXiv Detail & Related papers (2020-11-06T18:45:07Z) - Unbounded Bell violations for quantum genuine multipartite non-locality [0.5156484100374058]
Bell inequalities by measurements on quantum states give rise to the phenomenon of quantum non-locality.
We show that while in the so-called correlation scenario the relative violation of bilocal Bell inequalities by quantum resources is bounded, it does not grow arbitrarily with the number of inputs.
We identify Bell functionals that take the form of non-local games for which the ratio of the quantum and bilocal values grows unboundedly as a function of the number of inputs and outputs.
arXiv Detail & Related papers (2020-02-28T09:28:27Z) - Bell non-locality using tensor networks and sparse recovery [0.0]
Bell's theorem, stating that quantum predictions are incompatible with a local hidden variable description, is a cornerstone of quantum theory.
We propose to analyse a Bell scenario as a tensor network, a perspective permitting to test and quantify non-locality.
It allows to prove that non-signalling correlations can be described by hidden variable models governed by a quasi-probability.
arXiv Detail & Related papers (2020-01-30T16:59:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.