Towards a Kernel based Uncertainty Decomposition Framework for Data and
Models
- URL: http://arxiv.org/abs/2001.11495v4
- Date: Tue, 1 Dec 2020 14:42:13 GMT
- Title: Towards a Kernel based Uncertainty Decomposition Framework for Data and
Models
- Authors: Rishabh Singh and Jose C. Principe
- Abstract summary: This paper introduces a new framework for quantifying predictive uncertainty for both data and models.
We apply this framework as a surrogate tool for predictive uncertainty quantification of point-prediction neural network models.
- Score: 20.348825818435767
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces a new framework for quantifying predictive uncertainty
for both data and models that relies on projecting the data into a Gaussian
reproducing kernel Hilbert space (RKHS) and transforming the data probability
density function (PDF) in a way that quantifies the flow of its gradient as a
topological potential field quantified at all points in the sample space. This
enables the decomposition of the PDF gradient flow by formulating it as a
moment decomposition problem using operators from quantum physics, specifically
the Schrodinger's formulation. We experimentally show that the higher order
modes systematically cluster the different tail regions of the PDF, thereby
providing unprecedented discriminative resolution of data regions having high
epistemic uncertainty. In essence, this approach decomposes local realizations
of the data PDF in terms of uncertainty moments. We apply this framework as a
surrogate tool for predictive uncertainty quantification of point-prediction
neural network models, overcoming various limitations of conventional Bayesian
based uncertainty quantification methods. Experimental comparisons with some
established methods illustrate performance advantages exhibited by our
framework.
Related papers
- Inflationary Flows: Calibrated Bayesian Inference with Diffusion-Based Models [0.0]
We show how diffusion-based models can be repurposed for performing principled, identifiable Bayesian inference.
We show how such maps can be learned via standard DBM training using a novel noise schedule.
The result is a class of highly expressive generative models, uniquely defined on a low-dimensional latent space.
arXiv Detail & Related papers (2024-07-11T19:58:19Z) - Stochastic full waveform inversion with deep generative prior for uncertainty quantification [0.0]
Full Waveform Inversion (FWI) involves solving a nonlinear and often non-unique inverse problem.
FWI presents challenges such as local minima trapping and inadequate handling of inherent uncertainties.
We propose leveraging deep generative models as the prior distribution of geophysical parameters for Bayesian inversion.
arXiv Detail & Related papers (2024-06-07T11:44:50Z) - Towards stable real-world equation discovery with assessing
differentiating quality influence [52.2980614912553]
We propose alternatives to the commonly used finite differences-based method.
We evaluate these methods in terms of applicability to problems, similar to the real ones, and their ability to ensure the convergence of equation discovery algorithms.
arXiv Detail & Related papers (2023-11-09T23:32:06Z) - A General Framework for quantifying Aleatoric and Epistemic uncertainty
in Graph Neural Networks [0.29494468099506893]
Graph Neural Networks (GNN) provide a powerful framework that elegantly integrates Graph theory with Machine learning.
We consider the problem of quantifying the uncertainty in predictions of GNN stemming from modeling errors and measurement uncertainty.
We propose a unified approach to treat both sources of uncertainty in a Bayesian framework.
arXiv Detail & Related papers (2022-05-20T05:25:40Z) - Non-Linear Spectral Dimensionality Reduction Under Uncertainty [107.01839211235583]
We propose a new dimensionality reduction framework, called NGEU, which leverages uncertainty information and directly extends several traditional approaches.
We show that the proposed NGEU formulation exhibits a global closed-form solution, and we analyze, based on the Rademacher complexity, how the underlying uncertainties theoretically affect the generalization ability of the framework.
arXiv Detail & Related papers (2022-02-09T19:01:33Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - Quantifying Model Predictive Uncertainty with Perturbation Theory [21.591460685054546]
We propose a framework for predictive uncertainty quantification of a neural network.
We use perturbation theory from quantum physics to formulate a moment decomposition problem.
Our approach provides fast model predictive uncertainty estimates with much greater precision and calibration.
arXiv Detail & Related papers (2021-09-22T17:55:09Z) - A Kernel Framework to Quantify a Model's Local Predictive Uncertainty
under Data Distributional Shifts [21.591460685054546]
Internal layer outputs of a trained neural network contain all of the information related to both its mapping function and its input data distribution.
We propose a framework for predictive uncertainty quantification of a trained neural network that explicitly estimates the PDF of its raw prediction space.
The kernel framework is observed to provide model uncertainty estimates with much greater precision based on the ability to detect model prediction errors.
arXiv Detail & Related papers (2021-03-02T00:31:53Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.