論文の概要: Post-Training Piecewise Linear Quantization for Deep Neural Networks
- arxiv url: http://arxiv.org/abs/2002.00104v2
- Date: Wed, 18 Mar 2020 18:49:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-05 06:04:22.418645
- Title: Post-Training Piecewise Linear Quantization for Deep Neural Networks
- Title(参考訳): 深部ニューラルネットワークのための学習後線形量子化
- Authors: Jun Fang, Ali Shafiee, Hamzah Abdel-Aziz, David Thorsley, Georgios
Georgiadis, Joseph Hassoun
- Abstract要約: リソース制限されたデバイスへのディープニューラルネットワークのエネルギー効率向上において、量子化は重要な役割を果たす。
本稿では,長い尾を持つベル形状のテンソル値の正確な近似を実現するために,一方向線形量子化方式を提案する。
提案手法は,最先端のポストトレーニング量子化手法と比較して,画像分類,セマンティックセグメンテーション,オブジェクト検出においてわずかなオーバーヘッドで優れた性能を実現する。
- 参考スコア(独自算出の注目度): 13.717228230596167
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantization plays an important role in the energy-efficient deployment of
deep neural networks on resource-limited devices. Post-training quantization is
highly desirable since it does not require retraining or access to the full
training dataset. The well-established uniform scheme for post-training
quantization achieves satisfactory results by converting neural networks from
full-precision to 8-bit fixed-point integers. However, it suffers from
significant performance degradation when quantizing to lower bit-widths. In
this paper, we propose a piecewise linear quantization (PWLQ) scheme to enable
accurate approximation for tensor values that have bell-shaped distributions
with long tails. Our approach breaks the entire quantization range into
non-overlapping regions for each tensor, with each region being assigned an
equal number of quantization levels. Optimal breakpoints that divide the entire
range are found by minimizing the quantization error. Compared to
state-of-the-art post-training quantization methods, experimental results show
that our proposed method achieves superior performance on image classification,
semantic segmentation, and object detection with minor overhead.
- Abstract(参考訳): リソース制限されたデバイスへのディープニューラルネットワークのエネルギー効率向上において、量子化は重要な役割を果たす。
トレーニング後の量子化は、完全なトレーニングデータセットの再トレーニングやアクセスを必要としないため、非常に望ましい。
ニューラルネットワークを完全精度から8ビットの固定点整数に変換することにより、学習後量子化のための確立された均一なスキームが良好な結果を得る。
しかし、ビット幅の量子化では性能が著しく低下する。
本稿では,長尾のベル型分布を持つテンソル値の高精度近似を実現するために,区分線形量子化(pwlq)スキームを提案する。
提案手法では、量子化範囲全体をテンソル毎に重複しない領域に分割し、各領域に等数の量子化レベルを割り当てる。
範囲全体を分割する最適なブレークポイントは、量子化誤差を最小化する。
実験結果から,提案手法は画像分類,セマンティックセグメンテーション,オブジェクト検出において,少ないオーバーヘッドで優れた性能を発揮することが示された。
関連論文リスト
- BiTAT: Neural Network Binarization with Task-dependent Aggregated
Transformation [116.26521375592759]
量子化は、与えられたニューラルネットワークの高精度ウェイトとアクティベーションを、メモリ使用量と計算量を減らすために、低精度ウェイト/アクティベーションに変換することを目的としている。
コンパクトに設計されたバックボーンアーキテクチャの極端量子化(1ビットの重み/1ビットのアクティベーション)は、深刻な性能劣化をもたらす。
本稿では,性能劣化を効果的に緩和する新しいQAT法を提案する。
論文 参考訳(メタデータ) (2022-07-04T13:25:49Z) - Quantune: Post-training Quantization of Convolutional Neural Networks
using Extreme Gradient Boosting for Fast Deployment [15.720551497037176]
本稿では,量子化の構成の探索を高速化するために,Quantune という自動チューニングを提案する。
我々は、Quantuneが6つのCNNモデルに対して0.07 0.65%の精度で、量子化の探索時間を約36.5倍削減することを示した。
論文 参考訳(メタデータ) (2022-02-10T14:05:02Z) - Post-training Quantization for Neural Networks with Provable Guarantees [9.58246628652846]
学習後ニューラルネットワーク量子化手法であるGPFQを,欲求経路追従機構に基づいて修正する。
単層ネットワークを定量化するためには、相対二乗誤差は本質的に重み数で線形に減衰する。
論文 参考訳(メタデータ) (2022-01-26T18:47:38Z) - Cluster-Promoting Quantization with Bit-Drop for Minimizing Network
Quantization Loss [61.26793005355441]
クラスタ・プロモーティング・量子化(CPQ)は、ニューラルネットワークに最適な量子化グリッドを見つける。
DropBitsは、ニューロンの代わりにランダムにビットをドロップする標準のドロップアウト正規化を改訂する新しいビットドロップ技術である。
本手法を様々なベンチマークデータセットとネットワークアーキテクチャ上で実験的に検証する。
論文 参考訳(メタデータ) (2021-09-05T15:15:07Z) - In-Hindsight Quantization Range Estimation for Quantized Training [5.65658124285176]
従来の反復で推定した量子化範囲を用いて,現在を数値化する動的量子化手法であるin-hindsight range推定法を提案する。
今回のアプローチでは,ニューラルネットワークアクセラレータによる最小限のハードウェアサポートのみを必要としながら,勾配とアクティベーションの高速静的量子化を可能にする。
量子化範囲の推定のためのドロップイン代替として意図されており、他の量子化トレーニングの進歩と併用することができる。
論文 参考訳(メタデータ) (2021-05-10T10:25:28Z) - Direct Quantization for Training Highly Accurate Low Bit-width Deep
Neural Networks [73.29587731448345]
本稿では,低ビット幅重みとアクティベーションで深部畳み込みニューラルネットワークを訓練する2つの新しい手法を提案する。
まず、ビット幅の少ない重みを得るため、既存の方法の多くは、全精度ネットワーク重みで量子化することにより量子化重みを得る。
第二に、低ビット幅のアクティベーションを得るために、既存の作品はすべてのチャネルを等しく考慮する。
論文 参考訳(メタデータ) (2020-12-26T15:21:18Z) - DAQ: Distribution-Aware Quantization for Deep Image Super-Resolution
Networks [49.191062785007006]
画像超解像のための深い畳み込みニューラルネットワークの定量化は、計算コストを大幅に削減する。
既存の作業は、4ビット以下の超低精度の厳しい性能低下に苦しむか、または性能を回復するために重い微調整プロセスを必要とします。
高精度なトレーニングフリー量子化を実現する新しい分散認識量子化方式(DAQ)を提案する。
論文 参考訳(メタデータ) (2020-12-21T10:19:42Z) - Recurrence of Optimum for Training Weight and Activation Quantized
Networks [4.103701929881022]
低精度の重みとアクティベーションを備えたディープラーニングモデルのトレーニングには、必要な最適化タスクが伴う。
ネットワーク量子化の性質を克服する方法を紹介します。
また,訓練用量子化深層ネットワークにおける重み進化の繰り返し現象の数値的証拠を示す。
論文 参考訳(メタデータ) (2020-12-10T09:14:43Z) - Searching for Low-Bit Weights in Quantized Neural Networks [129.8319019563356]
低ビットの重みとアクティベーションを持つ量子ニューラルネットワークは、AIアクセラレータを開発する上で魅力的なものだ。
本稿では、任意の量子化ニューラルネットワークにおける離散重みを探索可能な変数とみなし、差分法を用いて正確に探索する。
論文 参考訳(メタデータ) (2020-09-18T09:13:26Z) - Optimal Gradient Quantization Condition for Communication-Efficient
Distributed Training [99.42912552638168]
勾配の通信は、コンピュータビジョンアプリケーションで複数のデバイスでディープニューラルネットワークをトレーニングするのに費用がかかる。
本研究は,textbfANY勾配分布に対する二値および多値勾配量子化の最適条件を導出する。
最適条件に基づいて, 偏差BinGradと非偏差ORQの2値勾配量子化と多値勾配量子化の2つの新しい量子化手法を開発した。
論文 参考訳(メタデータ) (2020-02-25T18:28:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。