論文の概要: Model Extraction Attacks against Recurrent Neural Networks
- arxiv url: http://arxiv.org/abs/2002.00123v1
- Date: Sat, 1 Feb 2020 01:47:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-05 01:12:42.130236
- Title: Model Extraction Attacks against Recurrent Neural Networks
- Title(参考訳): 繰り返しニューラルネットワークに対するモデル抽出攻撃
- Authors: Tatsuya Takemura and Naoto Yanai and Toru Fujiwara
- Abstract要約: 繰り返しニューラルネットワーク(RNN)に対するモデル抽出攻撃の脅威について検討する。
長い短期記憶(LSTM)から単純なRNNを用いて精度の高いモデルを抽出できるかどうかを論じる。
次に、特に損失関数とより複雑なアーキテクチャを構成することにより、精度の高いモデルを効率的に抽出できることを示す。
- 参考スコア(独自算出の注目度): 1.2891210250935146
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model extraction attacks are a kind of attacks in which an adversary obtains
a new model, whose performance is equivalent to that of a target model, via
query access to the target model efficiently, i.e., fewer datasets and
computational resources than those of the target model. Existing works have
dealt with only simple deep neural networks (DNNs), e.g., only three layers, as
targets of model extraction attacks, and hence are not aware of the
effectiveness of recurrent neural networks (RNNs) in dealing with time-series
data. In this work, we shed light on the threats of model extraction attacks
against RNNs. We discuss whether a model with a higher accuracy can be
extracted with a simple RNN from a long short-term memory (LSTM), which is a
more complicated and powerful RNN. Specifically, we tackle the following
problems. First, in a case of a classification problem, such as image
recognition, extraction of an RNN model without final outputs from an LSTM
model is presented by utilizing outputs halfway through the sequence. Next, in
a case of a regression problem. such as in weather forecasting, a new attack by
newly configuring a loss function is presented. We conduct experiments on our
model extraction attacks against an RNN and an LSTM trained with publicly
available academic datasets. We then show that a model with a higher accuracy
can be extracted efficiently, especially through configuring a loss function
and a more complex architecture different from the target model.
- Abstract(参考訳): モデル抽出攻撃は、敵がターゲットモデルと同等の性能を持つ新しいモデルを得る攻撃の一種であり、ターゲットモデルへのクエリアクセスを効率的に行うことにより、ターゲットモデルよりも少ないデータセットと計算資源を得る。
既存の研究は単純なディープニューラルネットワーク(DNN)のみを扱っており、例えばモデル抽出攻撃の標的として3つの層しか扱っていないため、時系列データを扱う上でのリカレントニューラルネットワーク(RNN)の有効性を意識していない。
本研究では,rnnに対するモデル抽出攻撃の脅威について考察した。
より複雑で強力なRNNであるLong Short-term memory(LSTM)から、より高精度なモデルが単純なRNNで抽出できるかどうかを論じる。
具体的には、以下の問題に取り組む。
まず、画像認識などの分類問題の場合、LSTMモデルから最終的な出力のないRNNモデルの抽出を、そのシーケンスの中間の出力を利用して行う。
次に、回帰問題の場合です。
天気予報のように 新たに損失関数を 設定した新たな攻撃が 提示される。
rnnとlstmに対するモデル抽出攻撃実験を行い,公開学術データセットを用いてトレーニングを行った。
次に、特に損失関数と、ターゲットモデルとは異なるより複雑なアーキテクチャを設定することにより、精度の高いモデルを効率的に抽出できることを示す。
関連論文リスト
- A model for multi-attack classification to improve intrusion detection
performance using deep learning approaches [0.0]
ここでの目的は、悪意のある攻撃を識別するための信頼性の高い侵入検知メカニズムを作ることである。
ディープラーニングベースのソリューションフレームワークは、3つのアプローチから成り立っている。
最初のアプローチは、adamax、SGD、adagrad、adam、RMSprop、nadam、adadeltaといった7つの機能を持つLong-Short Term Memory Recurrent Neural Network (LSTM-RNN)である。
モデルは特徴を自己学習し、攻撃クラスをマルチアタック分類として分類する。
論文 参考訳(メタデータ) (2023-10-25T05:38:44Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
連続時間自己回帰リカレントニューラルネットワーク(Continuous Time Autoregressive Recurrent Neural Network, CTRNN)は、不規則な観測を考慮に入れたディープラーニングモデルである。
重篤なケア環境下での血糖値の確率予測へのこれらのモデルの適用を実証する。
論文 参考訳(メタデータ) (2023-04-14T09:39:06Z) - TSFool: Crafting Highly-Imperceptible Adversarial Time Series through Multi-Objective Attack [6.243453526766042]
TSFoolと呼ばれる効率的な手法を提案する。
中心となる考え方は、「カモフラージュ係数」(Camouflage Coefficient)と呼ばれる新しい大域的な最適化目標であり、クラス分布から反対サンプルの非受容性を捉えるものである。
11のUCRデータセットとUEAデータセットの実験では、TSFoolは6つのホワイトボックスと3つのブラックボックスベンチマークアタックを著しく上回っている。
論文 参考訳(メタデータ) (2022-09-14T03:02:22Z) - Adversarial Robustness Assessment of NeuroEvolution Approaches [1.237556184089774]
CIFAR-10画像分類タスクにおける2つのNeuroEvolutionアプローチにより得られたモデルのロバスト性を評価する。
以上の結果から,進化したモデルが反復的手法で攻撃されると,その精度は通常0に低下するか0に近づきます。
これらの技法のいくつかは、元の入力に付加された摂動を悪化させ、頑丈さを損なう可能性がある。
論文 参考訳(メタデータ) (2022-07-12T10:40:19Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
本研究では, 人工ニューラルネットワークモデルを用いて, 嵐の軌跡/規模/強度履歴に基づいて, 強風をエミュレートする能力について検討する。
本研究では, 人工嵐シミュレーションのデータベースを用いて, 強風を予測できるニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2022-04-18T23:42:18Z) - DeepSteal: Advanced Model Extractions Leveraging Efficient Weight
Stealing in Memories [26.067920958354]
Deep Neural Networks(DNN)のプライバシに対する大きな脅威の1つは、モデル抽出攻撃である。
最近の研究によると、ハードウェアベースのサイドチャネル攻撃はDNNモデル(例えばモデルアーキテクチャ)の内部知識を明らかにすることができる。
本稿では,メモリサイドチャネル攻撃の助けを借りてDNN重みを効果的に盗む,高度なモデル抽出攻撃フレームワークであるDeepStealを提案する。
論文 参考訳(メタデータ) (2021-11-08T16:55:45Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
我々は、モデルミス特定を前進させるのに堅牢な逆問題を解決するためのディープニューラルネットワークについて検討する。
我々は,アルゴリズムの展開手法を根底にある回復問題のロバストバージョンに適用することにより,新しい堅牢なディープニューラルネットワークアーキテクチャを設計する。
提案したRESTネットワークは,圧縮センシングとレーダイメージングの両問題において,最先端のモデルベースおよびデータ駆動アルゴリズムを上回る性能を示す。
論文 参考訳(メタデータ) (2021-10-20T06:15:45Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
本稿では,アーキテクチャ検索を対象ハードウェアから切り離すための時間推定フレームワークを提案する。
提案手法は,マイクロカーネルと多層ベンチマークからモデルの集合を抽出し,マッピングとネットワーク実行時間推定のためのスタックモデルを生成する。
生成した混合モデルの推定精度と忠実度, 統計モデルとルーフラインモデル, 評価のための洗練されたルーフラインモデルを比較した。
論文 参考訳(メタデータ) (2021-05-07T11:39:05Z) - Auditory Attention Decoding from EEG using Convolutional Recurrent
Neural Network [20.37214453938965]
聴覚注意復号(aad)アプローチは,マルチトーカーシナリオにおいて参加者のアイデンティティを判定するために提案されている。
近年,この問題を解決するためにディープニューラルネットワーク(DNN)に基づくモデルが提案されている。
本論文では,新しい畳み込み型リカレントニューラルネットワーク(CRNN)に基づく回帰モデルと分類モデルを提案する。
論文 参考訳(メタデータ) (2021-03-03T05:09:40Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
武器の脅威検出とライブビデオからの攻撃的な行動は、潜在的に致命的な事故の迅速検出と予防に使用できる。
これを実現する一つの方法は、人工知能と、特に画像分析のための機械学習を使用することです。
従来のモノリシックなエンド・ツー・エンドのディープラーニングモデルと、セマンティクスセグメンテーションによって火花を検知する単純なニューラルネットワークのアンサンブルに基づく前述したモデルを比較した。
論文 参考訳(メタデータ) (2020-12-17T15:19:29Z) - Model Fusion via Optimal Transport [64.13185244219353]
ニューラルネットワークのための階層モデル融合アルゴリズムを提案する。
これは、不均一な非i.d.データに基づいてトレーニングされたニューラルネットワーク間での"ワンショット"な知識伝達に成功していることを示す。
論文 参考訳(メタデータ) (2019-10-12T22:07:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。