Deep Multi-View Enhancement Hashing for Image Retrieval
- URL: http://arxiv.org/abs/2002.00169v2
- Date: Tue, 16 Jun 2020 02:41:20 GMT
- Title: Deep Multi-View Enhancement Hashing for Image Retrieval
- Authors: Chenggang Yan, Biao Gong, Yuxuan Wei, Yue Gao
- Abstract summary: This paper proposes a supervised multi-view hash model which can enhance the multi-view information through neural networks.
The proposed method is systematically evaluated on the CIFAR-10, NUS-WIDE and MS-COCO datasets.
- Score: 40.974719473643724
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hashing is an efficient method for nearest neighbor search in large-scale
data space by embedding high-dimensional feature descriptors into a similarity
preserving Hamming space with a low dimension. However, large-scale high-speed
retrieval through binary code has a certain degree of reduction in retrieval
accuracy compared to traditional retrieval methods. We have noticed that
multi-view methods can well preserve the diverse characteristics of data.
Therefore, we try to introduce the multi-view deep neural network into the hash
learning field, and design an efficient and innovative retrieval model, which
has achieved a significant improvement in retrieval performance. In this paper,
we propose a supervised multi-view hash model which can enhance the multi-view
information through neural networks. This is a completely new hash learning
method that combines multi-view and deep learning methods. The proposed method
utilizes an effective view stability evaluation method to actively explore the
relationship among views, which will affect the optimization direction of the
entire network. We have also designed a variety of multi-data fusion methods in
the Hamming space to preserve the advantages of both convolution and
multi-view. In order to avoid excessive computing resources on the enhancement
procedure during retrieval, we set up a separate structure called memory
network which participates in training together. The proposed method is
systematically evaluated on the CIFAR-10, NUS-WIDE and MS-COCO datasets, and
the results show that our method significantly outperforms the state-of-the-art
single-view and multi-view hashing methods.
Related papers
- Fast and Scalable Semi-Supervised Learning for Multi-View Subspace Clustering [13.638434337947302]
FSSMSC is a novel solution to the high computational complexity commonly found in existing approaches.
The method generates a consensus anchor graph across all views, representing each data point as a sparse linear combination of chosen landmarks.
The effectiveness and efficiency of FSSMSC are validated through extensive experiments on multiple benchmark datasets of varying scales.
arXiv Detail & Related papers (2024-08-11T06:54:00Z) - Scalable Multi-view Clustering via Explicit Kernel Features Maps [20.610589722626074]
A growing awareness of multi-view learning is a consequence of the increasing prevalence of multiple views in real-world applications.
An efficient optimization strategy is proposed, leveraging kernel feature maps to reduce the computational burden while maintaining good clustering performance.
We conduct extensive experiments on real-world benchmark networks of various sizes in order to evaluate the performance of our algorithm against state-of-the-art multi-view subspace clustering methods and attributed-network multi-view approaches.
arXiv Detail & Related papers (2024-02-07T12:35:31Z) - Deep Metric Multi-View Hashing for Multimedia Retrieval [3.539519688102545]
We propose a novel deep metric multi-view hashing (DMMVH) method to address the mentioned problems.
On the MIR-Flickr25K, MS COCO, and NUS-WIDE, our method outperforms the current state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2023-04-13T09:25:35Z) - CoopHash: Cooperative Learning of Multipurpose Descriptor and Contrastive Pair Generator via Variational MCMC Teaching for Supervised Image Hashing [42.67510119856105]
generative models, such as Generative Adversarial Networks (GANs), can generate synthetic data in an image hashing model.
GANs are difficult to train, which prevents hashing approaches from jointly training the generative models and the hash functions.
We propose a novel framework, the generative cooperative hashing network, which is based on energy-based cooperative learning.
arXiv Detail & Related papers (2022-10-09T15:42:36Z) - Attentive Multi-View Deep Subspace Clustering Net [4.3386084277869505]
We propose a novel Attentive Multi-View Deep Subspace Nets (AMVDSN)
Our proposed method seeks to find a joint latent representation that explicitly considers both consensus and view-specific information.
The experimental results on seven real-world data sets have demonstrated the effectiveness of our proposed algorithm against some state-of-the-art subspace learning approaches.
arXiv Detail & Related papers (2021-12-23T12:57:26Z) - Manifold Regularized Dynamic Network Pruning [102.24146031250034]
This paper proposes a new paradigm that dynamically removes redundant filters by embedding the manifold information of all instances into the space of pruned networks.
The effectiveness of the proposed method is verified on several benchmarks, which shows better performance in terms of both accuracy and computational cost.
arXiv Detail & Related papers (2021-03-10T03:59:03Z) - Decoupled and Memory-Reinforced Networks: Towards Effective Feature
Learning for One-Step Person Search [65.51181219410763]
One-step methods have been developed to handle pedestrian detection and identification sub-tasks using a single network.
There are two major challenges in the current one-step approaches.
We propose a decoupled and memory-reinforced network (DMRNet) to overcome these problems.
arXiv Detail & Related papers (2021-02-22T06:19:45Z) - CIMON: Towards High-quality Hash Codes [63.37321228830102]
We propose a new method named textbfComprehensive stextbfImilarity textbfMining and ctextbfOnsistency leartextbfNing (CIMON)
First, we use global refinement and similarity statistical distribution to obtain reliable and smooth guidance. Second, both semantic and contrastive consistency learning are introduced to derive both disturb-invariant and discriminative hash codes.
arXiv Detail & Related papers (2020-10-15T14:47:14Z) - Unsupervised Deep Cross-modality Spectral Hashing [65.3842441716661]
The framework is a two-step hashing approach which decouples the optimization into binary optimization and hashing function learning.
We propose a novel spectral embedding-based algorithm to simultaneously learn single-modality and binary cross-modality representations.
We leverage the powerful CNN for images and propose a CNN-based deep architecture to learn text modality.
arXiv Detail & Related papers (2020-08-01T09:20:11Z) - Unsupervised Learning of Visual Features by Contrasting Cluster
Assignments [57.33699905852397]
We propose an online algorithm, SwAV, that takes advantage of contrastive methods without requiring to compute pairwise comparisons.
Our method simultaneously clusters the data while enforcing consistency between cluster assignments.
Our method can be trained with large and small batches and can scale to unlimited amounts of data.
arXiv Detail & Related papers (2020-06-17T14:00:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.