Unsupervised Learning of Visual Features by Contrasting Cluster
Assignments
- URL: http://arxiv.org/abs/2006.09882v5
- Date: Fri, 8 Jan 2021 17:01:05 GMT
- Title: Unsupervised Learning of Visual Features by Contrasting Cluster
Assignments
- Authors: Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr
Bojanowski, Armand Joulin
- Abstract summary: We propose an online algorithm, SwAV, that takes advantage of contrastive methods without requiring to compute pairwise comparisons.
Our method simultaneously clusters the data while enforcing consistency between cluster assignments.
Our method can be trained with large and small batches and can scale to unlimited amounts of data.
- Score: 57.33699905852397
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised image representations have significantly reduced the gap with
supervised pretraining, notably with the recent achievements of contrastive
learning methods. These contrastive methods typically work online and rely on a
large number of explicit pairwise feature comparisons, which is computationally
challenging. In this paper, we propose an online algorithm, SwAV, that takes
advantage of contrastive methods without requiring to compute pairwise
comparisons. Specifically, our method simultaneously clusters the data while
enforcing consistency between cluster assignments produced for different
augmentations (or views) of the same image, instead of comparing features
directly as in contrastive learning. Simply put, we use a swapped prediction
mechanism where we predict the cluster assignment of a view from the
representation of another view. Our method can be trained with large and small
batches and can scale to unlimited amounts of data. Compared to previous
contrastive methods, our method is more memory efficient since it does not
require a large memory bank or a special momentum network. In addition, we also
propose a new data augmentation strategy, multi-crop, that uses a mix of views
with different resolutions in place of two full-resolution views, without
increasing the memory or compute requirements much. We validate our findings by
achieving 75.3% top-1 accuracy on ImageNet with ResNet-50, as well as
surpassing supervised pretraining on all the considered transfer tasks.
Related papers
- Unsupervised Representation Learning by Balanced Self Attention Matching [2.3020018305241337]
We present a self-supervised method for embedding image features called BAM.
We obtain rich representations and avoid feature collapse by minimizing a loss that matches these distributions to their globally balanced and entropy regularized version.
We show competitive performance with leading methods on both semi-supervised and transfer-learning benchmarks.
arXiv Detail & Related papers (2024-08-04T12:52:44Z) - Intra-task Mutual Attention based Vision Transformer for Few-Shot Learning [12.5354658533836]
Humans possess remarkable ability to accurately classify new, unseen images after being exposed to only a few examples.
For artificial neural network models, determining the most relevant features for distinguishing between two images with limited samples presents a challenge.
We propose an intra-task mutual attention method for few-shot learning, that involves splitting the support and query samples into patches.
arXiv Detail & Related papers (2024-05-06T02:02:57Z) - MOCA: Self-supervised Representation Learning by Predicting Masked Online Codebook Assignments [72.6405488990753]
Self-supervised learning can be used for mitigating the greedy needs of Vision Transformer networks.
We propose a single-stage and standalone method, MOCA, which unifies both desired properties.
We achieve new state-of-the-art results on low-shot settings and strong experimental results in various evaluation protocols.
arXiv Detail & Related papers (2023-07-18T15:46:20Z) - Clustering by Maximizing Mutual Information Across Views [62.21716612888669]
We propose a novel framework for image clustering that incorporates joint representation learning and clustering.
Our method significantly outperforms state-of-the-art single-stage clustering methods across a variety of image datasets.
arXiv Detail & Related papers (2021-07-24T15:36:49Z) - AugNet: End-to-End Unsupervised Visual Representation Learning with
Image Augmentation [3.6790362352712873]
We propose AugNet, a new deep learning training paradigm to learn image features from a collection of unlabeled pictures.
Our experiments demonstrate that the method is able to represent the image in low dimensional space.
Unlike many deep-learning-based image retrieval algorithms, our approach does not require access to external annotated datasets.
arXiv Detail & Related papers (2021-06-11T09:02:30Z) - Unsupervised Visual Representation Learning by Online Constrained
K-Means [44.38989920488318]
Cluster discrimination is an effective pretext task for unsupervised representation learning.
We propose a novel clustering-based pretext task with online textbfConstrained textbfK-mtextbfeans (textbfCoKe)
Our online assignment method has a theoretical guarantee to approach the global optimum.
arXiv Detail & Related papers (2021-05-24T20:38:32Z) - FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning [64.32306537419498]
We propose a novel learned feature-based refinement and augmentation method that produces a varied set of complex transformations.
These transformations also use information from both within-class and across-class representations that we extract through clustering.
We demonstrate that our method is comparable to current state of art for smaller datasets while being able to scale up to larger datasets.
arXiv Detail & Related papers (2020-07-16T17:55:31Z) - Un-Mix: Rethinking Image Mixtures for Unsupervised Visual Representation
Learning [108.999497144296]
Recently advanced unsupervised learning approaches use the siamese-like framework to compare two "views" from the same image for learning representations.
This work aims to involve the distance concept on label space in the unsupervised learning and let the model be aware of the soft degree of similarity between positive or negative pairs.
Despite its conceptual simplicity, we show empirically that with the solution -- Unsupervised image mixtures (Un-Mix), we can learn subtler, more robust and generalized representations from the transformed input and corresponding new label space.
arXiv Detail & Related papers (2020-03-11T17:59:04Z) - Evolving Losses for Unsupervised Video Representation Learning [91.2683362199263]
We present a new method to learn video representations from large-scale unlabeled video data.
The proposed unsupervised representation learning results in a single RGB network and outperforms previous methods.
arXiv Detail & Related papers (2020-02-26T16:56:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.