Interpreting video features: a comparison of 3D convolutional networks
and convolutional LSTM networks
- URL: http://arxiv.org/abs/2002.00367v2
- Date: Fri, 10 Jul 2020 14:32:22 GMT
- Title: Interpreting video features: a comparison of 3D convolutional networks
and convolutional LSTM networks
- Authors: Joonatan M\"antt\"ari, Sofia Broom\'e, John Folkesson, Hedvig
Kjellstr\"om
- Abstract summary: We compare how 3D convolutional networks and convolutional LSTM networks learn features across temporally dependent frames.
Our findings indicate that the 3D convolutional model concentrates on shorter events in the input sequence, and places its spatial focus on fewer, contiguous areas.
- Score: 1.462434043267217
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A number of techniques for interpretability have been presented for deep
learning in computer vision, typically with the goal of understanding what the
networks have based their classification on. However, interpretability for deep
video architectures is still in its infancy and we do not yet have a clear
concept of how to decode spatiotemporal features. In this paper, we present a
study comparing how 3D convolutional networks and convolutional LSTM networks
learn features across temporally dependent frames. This is the first comparison
of two video models that both convolve to learn spatial features but have
principally different methods of modeling time. Additionally, we extend the
concept of meaningful perturbation introduced by \cite{MeaningFulPert} to the
temporal dimension, to identify the temporal part of a sequence most meaningful
to the network for a classification decision. Our findings indicate that the 3D
convolutional model concentrates on shorter events in the input sequence, and
places its spatial focus on fewer, contiguous areas.
Related papers
- SIGMA:Sinkhorn-Guided Masked Video Modeling [69.31715194419091]
Sinkhorn-guided Masked Video Modelling ( SIGMA) is a novel video pretraining method.
We distribute features of space-time tubes evenly across a limited number of learnable clusters.
Experimental results on ten datasets validate the effectiveness of SIGMA in learning more performant, temporally-aware, and robust video representations.
arXiv Detail & Related papers (2024-07-22T08:04:09Z) - SeMLaPS: Real-time Semantic Mapping with Latent Prior Networks and
Quasi-Planar Segmentation [53.83313235792596]
We present a new methodology for real-time semantic mapping from RGB-D sequences.
It combines a 2D neural network and a 3D network based on a SLAM system with 3D occupancy mapping.
Our system achieves state-of-the-art semantic mapping quality within 2D-3D networks-based systems.
arXiv Detail & Related papers (2023-06-28T22:36:44Z) - 3D Convolutional with Attention for Action Recognition [6.238518976312625]
Current action recognition methods use computationally expensive models for learning-temporal dependencies of the action.
This paper proposes a deep neural network architecture for learning such dependencies consisting of a 3D convolutional layer, fully connected layers and attention layer.
The method first learns spatial features and temporal of actions through 3D-CNN, and then the attention temporal mechanism helps the model to locate attention to essential features.
arXiv Detail & Related papers (2022-06-05T15:12:57Z) - Exploring Optical-Flow-Guided Motion and Detection-Based Appearance for
Temporal Sentence Grounding [61.57847727651068]
Temporal sentence grounding aims to localize a target segment in an untrimmed video semantically according to a given sentence query.
Most previous works focus on learning frame-level features of each whole frame in the entire video, and directly match them with the textual information.
We propose a novel Motion- and Appearance-guided 3D Semantic Reasoning Network (MA3SRN), which incorporates optical-flow-guided motion-aware, detection-based appearance-aware, and 3D-aware object-level features.
arXiv Detail & Related papers (2022-03-06T13:57:09Z) - Efficient Modelling Across Time of Human Actions and Interactions [92.39082696657874]
We argue that current fixed-sized-temporal kernels in 3 convolutional neural networks (CNNDs) can be improved to better deal with temporal variations in the input.
We study how we can better handle between classes of actions, by enhancing their feature differences over different layers of the architecture.
The proposed approaches are evaluated on several benchmark action recognition datasets and show competitive results.
arXiv Detail & Related papers (2021-10-05T15:39:11Z) - Spatio-Temporal Self-Attention Network for Video Saliency Prediction [13.873682190242365]
3D convolutional neural networks have achieved promising results for video tasks in computer vision.
We propose a novel Spatio-Temporal Self-Temporal Self-Attention 3 Network (STSANet) for video saliency prediction.
arXiv Detail & Related papers (2021-08-24T12:52:47Z) - Spatial-Temporal Correlation and Topology Learning for Person
Re-Identification in Videos [78.45050529204701]
We propose a novel framework to pursue discriminative and robust representation by modeling cross-scale spatial-temporal correlation.
CTL utilizes a CNN backbone and a key-points estimator to extract semantic local features from human body.
It explores a context-reinforced topology to construct multi-scale graphs by considering both global contextual information and physical connections of human body.
arXiv Detail & Related papers (2021-04-15T14:32:12Z) - Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks [87.50632573601283]
We present a novel method for multi-view depth estimation from a single video.
Our method achieves temporally coherent depth estimation results by using a novel Epipolar Spatio-Temporal (EST) transformer.
To reduce the computational cost, inspired by recent Mixture-of-Experts models, we design a compact hybrid network.
arXiv Detail & Related papers (2020-11-26T04:04:21Z) - Comparison of Spatiotemporal Networks for Learning Video Related Tasks [0.0]
Many methods for learning from sequences involve temporally processing 2D CNN features from the individual frames or directly utilizing 3D convolutions within high-performing 2D CNN architectures.
This work constructs an MNIST-based video dataset with parameters controlling relevant facets of common video-related tasks: classification, ordering, and speed estimation.
Models trained on this dataset are shown to differ in key ways depending on the task and their use of 2D convolutions, 3D convolutions, or convolutional LSTMs.
arXiv Detail & Related papers (2020-09-15T19:57:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.