Unsupervised Domain Adaptive Object Detection using Forward-Backward
Cyclic Adaptation
- URL: http://arxiv.org/abs/2002.00575v1
- Date: Mon, 3 Feb 2020 06:24:58 GMT
- Title: Unsupervised Domain Adaptive Object Detection using Forward-Backward
Cyclic Adaptation
- Authors: Siqi Yang, Lin Wu, Arnold Wiliem and Brian C. Lovell
- Abstract summary: We present a novel approach to perform the unsupervised domain adaptation for object detection through forward-backward cyclic (FBC) training.
Recent adversarial training based domain adaptation methods have shown their effectiveness on minimizing domain discrepancy via marginal feature distributions alignment.
We propose Forward-Backward Cyclic Adaptation, which iteratively computes adaptation from source to target via backward hopping and from target to source via forward passing.
- Score: 13.163271874039191
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel approach to perform the unsupervised domain adaptation for
object detection through forward-backward cyclic (FBC) training. Recent
adversarial training based domain adaptation methods have shown their
effectiveness on minimizing domain discrepancy via marginal feature
distributions alignment. However, aligning the marginal feature distributions
does not guarantee the alignment of class conditional distributions. This
limitation is more evident when adapting object detectors as the domain
discrepancy is larger compared to the image classification task, e.g. various
number of objects exist in one image and the majority of content in an image is
the background. This motivates us to learn domain invariance for category level
semantics via gradient alignment. Intuitively, if the gradients of two domains
point in similar directions, then the learning of one domain can improve that
of another domain. To achieve gradient alignment, we propose Forward-Backward
Cyclic Adaptation, which iteratively computes adaptation from source to target
via backward hopping and from target to source via forward passing. In
addition, we align low-level features for adapting holistic color/texture via
adversarial training. However, the detector performs well on both domains is
not ideal for target domain. As such, in each cycle, domain diversity is
enforced by maximum entropy regularization on the source domain to penalize
confident source-specific learning and minimum entropy regularization on target
domain to intrigue target-specific learning. Theoretical analysis of the
training process is provided, and extensive experiments on challenging
cross-domain object detection datasets have shown the superiority of our
approach over the state-of-the-art.
Related papers
- Unsupervised Domain Adaptation for Anatomical Landmark Detection [5.070344284426738]
We propose a novel framework for anatomical landmark detection under the setting of unsupervised domain adaptation (UDA)
The framework leverages self-training and domain adversarial learning to address the domain gap during adaptation.
Our experiments on cephalometric and lung landmark detection show the effectiveness of the method, which reduces the domain gap by a large margin and outperforms other UDA methods consistently.
arXiv Detail & Related papers (2023-08-25T10:22:13Z) - AIR-DA: Adversarial Image Reconstruction for Unsupervised Domain
Adaptive Object Detection [28.22783703278792]
Adrial Image Reconstruction (AIR) as the regularizer to facilitate the adversarial training of the feature extractor.
Our evaluations across several datasets of challenging domain shifts demonstrate that the proposed method outperforms all previous methods.
arXiv Detail & Related papers (2023-03-27T16:51:51Z) - Cyclically Disentangled Feature Translation for Face Anti-spoofing [61.70377630461084]
We propose a novel domain adaptation method called cyclically disentangled feature translation network (CDFTN)
CDFTN generates pseudo-labeled samples that possess: 1) source domain-invariant liveness features and 2) target domain-specific content features, which are disentangled through domain adversarial training.
A robust classifier is trained based on the synthetic pseudo-labeled images under the supervision of source domain labels.
arXiv Detail & Related papers (2022-12-07T14:12:34Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
Unsupervised domain adaptation for object detection is a challenging problem with many real-world applications.
We propose a novel augmented feature alignment network (AFAN) which integrates intermediate domain image generation and domain-adversarial training.
Our approach significantly outperforms the state-of-the-art methods on standard benchmarks for both similar and dissimilar domain adaptations.
arXiv Detail & Related papers (2021-06-10T05:01:20Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
We propose an instance affinity based criterion for source to target transfer during adaptation, called ILA-DA.
We first propose a reliable and efficient method to extract similar and dissimilar samples across source and target, and utilize a multi-sample contrastive loss to drive the domain alignment process.
We verify the effectiveness of ILA-DA by observing consistent improvements in accuracy over popular domain adaptation approaches on a variety of benchmark datasets.
arXiv Detail & Related papers (2021-04-03T01:33:14Z) - Pixel-Level Cycle Association: A New Perspective for Domain Adaptive
Semantic Segmentation [169.82760468633236]
We propose to build the pixel-level cycle association between source and target pixel pairs.
Our method can be trained end-to-end in one stage and introduces no additional parameters.
arXiv Detail & Related papers (2020-10-31T00:11:36Z) - Discriminative Cross-Domain Feature Learning for Partial Domain
Adaptation [70.45936509510528]
Partial domain adaptation aims to adapt knowledge from a larger and more diverse source domain to a smaller target domain with less number of classes.
Recent practice on domain adaptation manages to extract effective features by incorporating the pseudo labels for the target domain.
It is essential to align target data with only a small set of source data.
arXiv Detail & Related papers (2020-08-26T03:18:53Z) - Unsupervised Cross-domain Image Classification by Distance Metric Guided
Feature Alignment [11.74643883335152]
Unsupervised domain adaptation is a promising avenue which transfers knowledge from a source domain to a target domain.
We propose distance metric guided feature alignment (MetFA) to extract discriminative as well as domain-invariant features on both source and target domains.
Our model integrates class distribution alignment to transfer semantic knowledge from a source domain to a target domain.
arXiv Detail & Related papers (2020-08-19T13:36:57Z) - Contradistinguisher: A Vapnik's Imperative to Unsupervised Domain
Adaptation [7.538482310185133]
We propose a model referred Contradistinguisher that learns contrastive features and whose objective is to jointly learn to contradistinguish the unlabeled target domain in an unsupervised way.
We achieve the state-of-the-art on Office-31 and VisDA-2017 datasets in both single-source and multi-source settings.
arXiv Detail & Related papers (2020-05-25T19:54:38Z) - CrDoCo: Pixel-level Domain Transfer with Cross-Domain Consistency [119.45667331836583]
Unsupervised domain adaptation algorithms aim to transfer the knowledge learned from one domain to another.
We present a novel pixel-wise adversarial domain adaptation algorithm.
arXiv Detail & Related papers (2020-01-09T19:00:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.