Unsupervised Domain Adaptation for Anatomical Landmark Detection
- URL: http://arxiv.org/abs/2308.13286v1
- Date: Fri, 25 Aug 2023 10:22:13 GMT
- Title: Unsupervised Domain Adaptation for Anatomical Landmark Detection
- Authors: Haibo Jin, Haoxuan Che, Hao Chen
- Abstract summary: We propose a novel framework for anatomical landmark detection under the setting of unsupervised domain adaptation (UDA)
The framework leverages self-training and domain adversarial learning to address the domain gap during adaptation.
Our experiments on cephalometric and lung landmark detection show the effectiveness of the method, which reduces the domain gap by a large margin and outperforms other UDA methods consistently.
- Score: 5.070344284426738
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, anatomical landmark detection has achieved great progresses on
single-domain data, which usually assumes training and test sets are from the
same domain. However, such an assumption is not always true in practice, which
can cause significant performance drop due to domain shift. To tackle this
problem, we propose a novel framework for anatomical landmark detection under
the setting of unsupervised domain adaptation (UDA), which aims to transfer the
knowledge from labeled source domain to unlabeled target domain. The framework
leverages self-training and domain adversarial learning to address the domain
gap during adaptation. Specifically, a self-training strategy is proposed to
select reliable landmark-level pseudo-labels of target domain data with dynamic
thresholds, which makes the adaptation more effective. Furthermore, a domain
adversarial learning module is designed to handle the unaligned data
distributions of two domains by learning domain-invariant features via
adversarial training. Our experiments on cephalometric and lung landmark
detection show the effectiveness of the method, which reduces the domain gap by
a large margin and outperforms other UDA methods consistently. The code is
available at https://github.com/jhb86253817/UDA_Med_Landmark.
Related papers
- LE-UDA: Label-efficient unsupervised domain adaptation for medical image
segmentation [24.655779957716558]
We propose a novel and generic framework called Label-Efficient Unsupervised Domain Adaptation"(LE-UDA)
In LE-UDA, we construct self-ensembling consistency for knowledge transfer between both domains, as well as a self-ensembling adversarial learning module to achieve better feature alignment for UDA.
Experimental results demonstrate that the proposed LE-UDA can efficiently leverage limited source labels to improve cross-domain segmentation performance, outperforming state-of-the-art UDA approaches in the literature.
arXiv Detail & Related papers (2022-12-05T07:47:35Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
Road segmentation from remote sensing images is a challenging task with wide ranges of application potentials.
We propose a novel stagewise domain adaptation model called RoadDA to address the domain shift (DS) issue in this field.
Experiment results on two benchmarks demonstrate that RoadDA can efficiently reduce the domain gap and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-08-28T09:29:14Z) - Adversarial Domain Adaptation with Self-Training for EEG-based Sleep
Stage Classification [13.986662296156013]
We propose a novel adversarial learning framework to tackle the domain shift problem in the unlabeled target domain.
First, we develop unshared attention mechanisms to preserve the domain-specific features in the source and target domains.
Second, we design a self-training strategy to align the fine-grained distributions class for the source and target domains via target domain pseudo labels.
arXiv Detail & Related papers (2021-07-09T14:56:12Z) - Cross-domain Contrastive Learning for Unsupervised Domain Adaptation [108.63914324182984]
Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from a fully-labeled source domain to a different unlabeled target domain.
We build upon contrastive self-supervised learning to align features so as to reduce the domain discrepancy between training and testing sets.
arXiv Detail & Related papers (2021-06-10T06:32:30Z) - Contrastive Learning and Self-Training for Unsupervised Domain
Adaptation in Semantic Segmentation [71.77083272602525]
UDA attempts to provide efficient knowledge transfer from a labeled source domain to an unlabeled target domain.
We propose a contrastive learning approach that adapts category-wise centroids across domains.
We extend our method with self-training, where we use a memory-efficient temporal ensemble to generate consistent and reliable pseudo-labels.
arXiv Detail & Related papers (2021-05-05T11:55:53Z) - Prototypical Cross-domain Self-supervised Learning for Few-shot
Unsupervised Domain Adaptation [91.58443042554903]
We propose an end-to-end Prototypical Cross-domain Self-Supervised Learning (PCS) framework for Few-shot Unsupervised Domain Adaptation (FUDA)
PCS not only performs cross-domain low-level feature alignment, but it also encodes and aligns semantic structures in the shared embedding space across domains.
Compared with state-of-the-art methods, PCS improves the mean classification accuracy over different domain pairs on FUDA by 10.5%, 3.5%, 9.0%, and 13.2% on Office, Office-Home, VisDA-2017, and DomainNet, respectively.
arXiv Detail & Related papers (2021-03-31T02:07:42Z) - Unsupervised Cross-domain Image Classification by Distance Metric Guided
Feature Alignment [11.74643883335152]
Unsupervised domain adaptation is a promising avenue which transfers knowledge from a source domain to a target domain.
We propose distance metric guided feature alignment (MetFA) to extract discriminative as well as domain-invariant features on both source and target domains.
Our model integrates class distribution alignment to transfer semantic knowledge from a source domain to a target domain.
arXiv Detail & Related papers (2020-08-19T13:36:57Z) - Domain Adaptation for Semantic Parsing [68.81787666086554]
We propose a novel semantic for domain adaptation, where we have much fewer annotated data in the target domain compared to the source domain.
Our semantic benefits from a two-stage coarse-to-fine framework, thus can provide different and accurate treatments for the two stages.
Experiments on a benchmark dataset show that our method consistently outperforms several popular domain adaptation strategies.
arXiv Detail & Related papers (2020-06-23T14:47:41Z) - Contradistinguisher: A Vapnik's Imperative to Unsupervised Domain
Adaptation [7.538482310185133]
We propose a model referred Contradistinguisher that learns contrastive features and whose objective is to jointly learn to contradistinguish the unlabeled target domain in an unsupervised way.
We achieve the state-of-the-art on Office-31 and VisDA-2017 datasets in both single-source and multi-source settings.
arXiv Detail & Related papers (2020-05-25T19:54:38Z) - Cross-domain Self-supervised Learning for Domain Adaptation with Few
Source Labels [78.95901454696158]
We propose a novel Cross-Domain Self-supervised learning approach for domain adaptation.
Our method significantly boosts performance of target accuracy in the new target domain with few source labels.
arXiv Detail & Related papers (2020-03-18T15:11:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.