Bending Loss Regularized Network for Nuclei Segmentation in
Histopathology Images
- URL: http://arxiv.org/abs/2002.01020v1
- Date: Mon, 3 Feb 2020 21:20:50 GMT
- Title: Bending Loss Regularized Network for Nuclei Segmentation in
Histopathology Images
- Authors: Haotian Wang, Min Xian, Aleksandar Vakanski
- Abstract summary: We propose a bending loss regularized network for nuclei segmentation.
The proposed bending loss defines high penalties to contour points with large curvatures, and applies small penalties to contour points with small curvature.
Minimizing the bending loss can avoid generating contours that encompass multiple nuclei.
- Score: 69.74667930907314
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Separating overlapped nuclei is a major challenge in histopathology image
analysis. Recently published approaches have achieved promising overall
performance on public datasets; however, their performance in segmenting
overlapped nuclei are limited. To address the issue, we propose the bending
loss regularized network for nuclei segmentation. The proposed bending loss
defines high penalties to contour points with large curvatures, and applies
small penalties to contour points with small curvature. Minimizing the bending
loss can avoid generating contours that encompass multiple nuclei. The proposed
approach is validated on the MoNuSeg dataset using five quantitative metrics.
It outperforms six state-of-the-art approaches on the following metrics:
Aggregate Jaccard Index, Dice, Recognition Quality, and Pan-optic Quality.
Related papers
- Beyond Point Annotation: A Weakly Supervised Network Guided by Multi-Level Labels Generated from Four-Point Annotation for Thyroid Nodule Segmentation in Ultrasound Image [8.132809580086565]
We propose a weakly-supervised network that generates multi-level labels from four-point annotation to refine constraints for delicate nodule segmentation.
Our proposed network outperforms existing weakly-supervised methods on two public datasets with respect to the accuracy and robustness.
arXiv Detail & Related papers (2024-10-25T06:34:53Z) - Contour-weighted loss for class-imbalanced image segmentation [2.183832403223894]
Image segmentation is critically important in almost all medical image analysis for automatic interpretations and processing.
It is often challenging to perform image segmentation due to data imbalance between intra- and inter-class.
We propose a new methodology to address the issue, with a compact yet effective contour-weighted loss function.
arXiv Detail & Related papers (2024-06-07T07:43:52Z) - Enhancing Nucleus Segmentation with HARU-Net: A Hybrid Attention Based
Residual U-Blocks Network [9.718765096478371]
Current methods for nucleus segmentation rely on nuclear morphology or contour-based approaches.
We propose a dual-branch network using hybrid attention based residual U-blocks for nucleus instance segmentation.
Within the network, we propose a context fusion block (CF-block) that effectively extracts and merges contextual information from the network.
arXiv Detail & Related papers (2023-08-07T08:03:20Z) - Enhanced Sharp-GAN For Histopathology Image Synthesis [63.845552349914186]
Histopathology image synthesis aims to address the data shortage issue in training deep learning approaches for accurate cancer detection.
We propose a novel approach that enhances the quality of synthetic images by using nuclei topology and contour regularization.
The proposed approach outperforms Sharp-GAN in all four image quality metrics on two datasets.
arXiv Detail & Related papers (2023-01-24T17:54:01Z) - Sharp-GAN: Sharpness Loss Regularized GAN for Histopathology Image
Synthesis [65.47507533905188]
Conditional generative adversarial networks have been applied to generate synthetic histopathology images.
We propose a sharpness loss regularized generative adversarial network to synthesize realistic histopathology images.
arXiv Detail & Related papers (2021-10-27T18:54:25Z) - Bend-Net: Bending Loss Regularized Multitask Learning Network for Nuclei
Segmentation in Histopathology Images [65.47507533905188]
We propose a novel multitask learning network with a bending loss regularizer to separate overlapped nuclei accurately.
The newly proposed multitask learning architecture enhances the generalization by learning shared representation from three tasks.
The proposed bending loss defines high penalties to concave contour points with large curvatures, and applies small penalties to convex contour points with small curvatures.
arXiv Detail & Related papers (2021-09-30T17:29:44Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Weakly Supervised Deep Nuclei Segmentation Using Partial Points
Annotation in Histopathology Images [51.893494939675314]
We propose a novel weakly supervised segmentation framework based on partial points annotation.
We show that our method can achieve competitive performance compared to the fully supervised counterpart and the state-of-the-art methods.
arXiv Detail & Related papers (2020-07-10T15:41:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.