Enhanced Sharp-GAN For Histopathology Image Synthesis
- URL: http://arxiv.org/abs/2301.10187v1
- Date: Tue, 24 Jan 2023 17:54:01 GMT
- Title: Enhanced Sharp-GAN For Histopathology Image Synthesis
- Authors: Sujata Butte, Haotian Wang, Aleksandar Vakanski, Min Xian
- Abstract summary: Histopathology image synthesis aims to address the data shortage issue in training deep learning approaches for accurate cancer detection.
We propose a novel approach that enhances the quality of synthetic images by using nuclei topology and contour regularization.
The proposed approach outperforms Sharp-GAN in all four image quality metrics on two datasets.
- Score: 63.845552349914186
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Histopathology image synthesis aims to address the data shortage issue in
training deep learning approaches for accurate cancer detection. However,
existing methods struggle to produce realistic images that have accurate nuclei
boundaries and less artifacts, which limits the application in downstream
tasks. To address the challenges, we propose a novel approach that enhances the
quality of synthetic images by using nuclei topology and contour
regularization. The proposed approach uses the skeleton map of nuclei to
integrate nuclei topology and separate touching nuclei. In the loss function,
we propose two new contour regularization terms that enhance the contrast
between contour and non-contour pixels and increase the similarity between
contour pixels. We evaluate the proposed approach on the two datasets using
image quality metrics and a downstream task (nuclei segmentation). The proposed
approach outperforms Sharp-GAN in all four image quality metrics on two
datasets. By integrating 6k synthetic images from the proposed approach into
training, a nuclei segmentation model achieves the state-of-the-art
segmentation performance on TNBC dataset and its detection quality (DQ),
segmentation quality (SQ), panoptic quality (PQ), and aggregated Jaccard index
(AJI) is 0.855, 0.863, 0.691, and 0.683, respectively.
Related papers
- Deep Few-view High-resolution Photon-counting Extremity CT at Halved Dose for a Clinical Trial [8.393536317952085]
We propose a deep learning-based approach for PCCT image reconstruction at halved dose and doubled speed in a New Zealand clinical trial.
We present a patch-based volumetric refinement network to alleviate the GPU memory limitation, train network with synthetic data, and use model-based iterative refinement to bridge the gap between synthetic and real-world data.
arXiv Detail & Related papers (2024-03-19T00:07:48Z) - Rapid hyperspectral photothermal mid-infrared spectroscopic imaging from
sparse data for gynecologic cancer tissue subtyping [3.550171634694342]
Mid-infrared (MIR) hyperspectral photothermal imaging is a label-free, biochemically quantitative technology.
This work presents a novel approach to MIR photothermal imaging that enhances its speed by an order of magnitude.
arXiv Detail & Related papers (2024-02-28T00:57:35Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - FocalUNETR: A Focal Transformer for Boundary-aware Segmentation of CT
Images [6.616213497895369]
We propose a novel focal transformer-based image segmentation architecture to extract local visual features and global context from CT images.
We demonstrate that this design significantly improves the quality of the CT-based prostate segmentation task over other competing methods.
arXiv Detail & Related papers (2022-10-06T20:06:24Z) - InsMix: Towards Realistic Generative Data Augmentation for Nuclei
Instance Segmentation [29.78647170035808]
We propose a realistic data augmentation method for nuclei segmentation, named InsMix, that follows a Copy-Paste-Smooth principle.
Specifically, we propose morphology constraints that enable the augmented images to acquire luxuriant information about nuclei.
To fully exploit the pixel redundancy of the background, we propose a background perturbation method, which randomly shuffles the background patches.
arXiv Detail & Related papers (2022-06-30T08:58:05Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
We present a new type of discriminator, the segmentor, to accurately locate the lesions and improve the visual quality of pseudo-healthy images.
We apply the generated images into medical image enhancement and utilize the enhanced results to cope with the low contrast problem.
Comprehensive experiments on the T2 modality of BraTS demonstrate that the proposed method substantially outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T08:41:17Z) - High Quality Segmentation for Ultra High-resolution Images [72.97958314291648]
We propose the Continuous Refinement Model for the ultra high-resolution segmentation refinement task.
Our proposed method is fast and effective on image segmentation refinement.
arXiv Detail & Related papers (2021-11-29T11:53:06Z) - Sharp-GAN: Sharpness Loss Regularized GAN for Histopathology Image
Synthesis [65.47507533905188]
Conditional generative adversarial networks have been applied to generate synthetic histopathology images.
We propose a sharpness loss regularized generative adversarial network to synthesize realistic histopathology images.
arXiv Detail & Related papers (2021-10-27T18:54:25Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.