論文の概要: Neuro-evolutionary Frameworks for Generalized Learning Agents
- arxiv url: http://arxiv.org/abs/2002.01088v1
- Date: Tue, 4 Feb 2020 02:11:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-04 03:08:10.606602
- Title: Neuro-evolutionary Frameworks for Generalized Learning Agents
- Title(参考訳): 汎用学習エージェントのための神経進化的枠組み
- Authors: Thommen George Karimpanal
- Abstract要約: 近年のディープラーニングと深層強化学習の成功は、最先端の人工知能技術としての地位を確固たるものにしている。
これらのアプローチの長年の欠点は、そのようなシステムが設計され、デプロイされる方法を再考する必要性を示している。
このような神経進化の枠組みから期待される改善と関連する課題について論じる。
- 参考スコア(独自算出の注目度): 1.2691047660244335
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recent successes of deep learning and deep reinforcement learning have
firmly established their statuses as state-of-the-art artificial learning
techniques. However, longstanding drawbacks of these approaches, such as their
poor sample efficiencies and limited generalization capabilities point to a
need for re-thinking the way such systems are designed and deployed. In this
paper, we emphasize how the use of these learning systems, in conjunction with
a specific variation of evolutionary algorithms could lead to the emergence of
unique characteristics such as the automated acquisition of a variety of
desirable behaviors and useful sets of behavior priors. This could pave the way
for learning to occur in a generalized and continual manner, with minimal
interactions with the environment. We discuss the anticipated improvements from
such neuro-evolutionary frameworks, along with the associated challenges, as
well as its potential for application to a number of research areas.
- Abstract(参考訳): 近年のディープラーニングと強化学習の成功は、最先端の人工知能技術としての地位を確立している。
しかし、サンプル効率の低さや限定的な一般化能力といったこれらのアプローチの長年の欠点は、システムの設計とデプロイの方法を再検討する必要があることを示している。
本稿では,これらの学習システムと進化アルゴリズムの特定のバリエーションを組み合わせることで,様々な望ましい行動の自動獲得や行動優先の有用なセットなど,ユニークな特徴が出現する可能性について強調する。
これにより、環境との最小限の相互作用で、学習を一般化し、継続的に行う方法が整うことができる。
このような神経進化の枠組みから期待される改善と関連する課題、そして多くの研究分野への応用の可能性について論じる。
関連論文リスト
- Neural networks that overcome classic challenges through practice [22.741266810854228]
メタラーニングを使ってこれらの課題を克服した最近の研究をレビューする。
我々は,この原則の応用を,体系性,破滅的忘れ,数発の学習,多段階の推論という4つの古典的課題にレビューする。
論文 参考訳(メタデータ) (2024-10-14T15:07:37Z) - Towards Improving Robustness Against Common Corruptions using Mixture of
Class Specific Experts [10.27974860479791]
本稿では,クラス特化エキスパートアーキテクチャの混合として知られる新しいパラダイムを紹介する。
提案したアーキテクチャは、一般的なニューラルネットワーク構造に関連する脆弱性を軽減することを目的としている。
論文 参考訳(メタデータ) (2023-11-16T20:09:47Z) - Towards a General Framework for Continual Learning with Pre-training [55.88910947643436]
本稿では,事前学習を用いた逐次到着タスクの連続学習のための一般的な枠組みを提案する。
我々はその目的を,タスク内予測,タスク同一性推論,タスク適応予測という3つの階層的構成要素に分解する。
本稿では,パラメータ効率細調整(PEFT)技術と表現統計量を用いて,これらのコンポーネントを明示的に最適化する革新的な手法を提案する。
論文 参考訳(メタデータ) (2023-10-21T02:03:38Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
大規模なニューラル生成モデルは、意味的に豊富なテキストのパスを合成したり、複雑な画像を生成することができる。
我々はコモン・モデル・オブ・コグニティブ・ニューラル・ジェネレーティブ・システムについて論じる。
論文 参考訳(メタデータ) (2023-10-14T23:28:48Z) - A Novel Neural-symbolic System under Statistical Relational Learning [50.747658038910565]
本稿では,GBPGRと呼ばれる2段階の確率的グラフィカル推論フレームワークを提案する。
GBPGRでは、シンボル推論の結果を用いて、ディープラーニングモデルによる予測を洗練し、修正する。
提案手法は高い性能を示し, 帰納的タスクと帰納的タスクの両方において効果的な一般化を示す。
論文 参考訳(メタデータ) (2023-09-16T09:15:37Z) - A Domain-Agnostic Approach for Characterization of Lifelong Learning
Systems [128.63953314853327]
「生涯学習」システムには,1)継続的学習,2)伝達と適応,3)拡張性があります。
この一連のメトリクスは、様々な複雑な生涯学習システムの開発に役立てることができることを示す。
論文 参考訳(メタデータ) (2023-01-18T21:58:54Z) - Learning Dynamics and Generalization in Reinforcement Learning [59.530058000689884]
時間差学習は, エージェントが訓練の初期段階において, 値関数の非平滑成分を適合させるのに役立つことを理論的に示す。
本研究では,高密度報酬タスクの時間差アルゴリズムを用いて学習したニューラルネットワークが,ランダムなネットワークや政策手法で学習した勾配ネットワークよりも,状態間の一般化が弱いことを示す。
論文 参考訳(メタデータ) (2022-06-05T08:49:16Z) - Learning Complex Spatial Behaviours in ABM: An Experimental
Observational Study [0.0]
本稿では,創発的エージェント行動の生成にReinforcement Learningを適用する方法について検討する。
一連のシミュレーションを行ない, エージェントが実世界の知的適応行動の特性を示す方法として, プロクサマルポリシー最適化アルゴリズムを用いて訓練されたことを実証した。
論文 参考訳(メタデータ) (2022-01-04T11:56:11Z) - Collective Intelligence for Deep Learning: A Survey of Recent
Developments [11.247894240593691]
我々は、複雑なシステムへのニューラルネットワーク研究の関与に関する歴史的文脈を提供する。
我々は,集合知の原理を取り入れた,現代のディープラーニング研究の活発な領域をいくつか取り上げる。
論文 参考訳(メタデータ) (2021-11-29T08:39:32Z) - Adaptive Explainable Continual Learning Framework for Regression
Problems with Focus on Power Forecasts [0.0]
この文脈における潜在的な課題を説明するために、2つの連続的な学習シナリオが提案される。
ディープニューラルネットワークは、新しいタスクを学習し、アプリケーションのデータ量が増加し続けるにつれて、古いタスクから得た知識を忘れないようにしなければならない。
研究トピックは関連しているが、連続的なディープラーニングアルゴリズムの開発、データストリームにおける非定常検出戦略、説明可能で可視化可能な人工知能などに限定されていない。
論文 参考訳(メタデータ) (2021-08-24T14:59:10Z) - Importance Weighted Policy Learning and Adaptation [89.46467771037054]
政治外学習の最近の進歩の上に構築された,概念的にシンプルで,汎用的で,モジュール的な補完的アプローチについて検討する。
このフレームワークは確率論的推論文学のアイデアにインスパイアされ、堅牢な非政治学習と事前の行動を組み合わせる。
提案手法は,メタ強化学習ベースラインと比較して,ホールドアウトタスクにおける競合適応性能を実現し,複雑なスパース・リワードシナリオにスケールすることができる。
論文 参考訳(メタデータ) (2020-09-10T14:16:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。