Efficient, Noise-Tolerant, and Private Learning via Boosting
- URL: http://arxiv.org/abs/2002.01100v1
- Date: Tue, 4 Feb 2020 03:16:37 GMT
- Title: Efficient, Noise-Tolerant, and Private Learning via Boosting
- Authors: Mark Bun, Marco Leandro Carmosino, Jessica Sorrell
- Abstract summary: We show how to construct noise-tolerant and private PAC learners for large-margin halfspaces.
This first bound illustrates a general methodology for obtaining PAC learners from privacy.
The second bound uses standard techniques to match the best known sample complexity for differentially private learning of large-margin halfspaces.
- Score: 15.62988331732388
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a simple framework for designing private boosting algorithms. We
give natural conditions under which these algorithms are differentially
private, efficient, and noise-tolerant PAC learners. To demonstrate our
framework, we use it to construct noise-tolerant and private PAC learners for
large-margin halfspaces whose sample complexity does not depend on the
dimension.
We give two sample complexity bounds for our large-margin halfspace learner.
One bound is based only on differential privacy, and uses this guarantee as an
asset for ensuring generalization. This first bound illustrates a general
methodology for obtaining PAC learners from privacy, which may be of
independent interest. The second bound uses standard techniques from the theory
of large-margin classification (the fat-shattering dimension) to match the best
known sample complexity for differentially private learning of large-margin
halfspaces, while additionally tolerating random label noise.
Related papers
- Federated Cubic Regularized Newton Learning with Sparsification-amplified Differential Privacy [10.396575601912673]
We introduce a federated learning algorithm called Differentially Private Federated Cubic Regularized Newton (DP-FCRN)
By leveraging second-order techniques, our algorithm achieves lower iteration complexity compared to first-order methods.
We also incorporate noise perturbation during local computations to ensure privacy.
arXiv Detail & Related papers (2024-08-08T08:48:54Z) - Dynamic Privacy Allocation for Locally Differentially Private Federated
Learning with Composite Objectives [10.528569272279999]
This paper proposes a differentially private federated learning algorithm for strongly convex but possibly nonsmooth problems.
The proposed algorithm adds artificial noise to the shared information to ensure privacy and dynamically allocates the time-varying noise variance to minimize an upper bound of the optimization error.
Numerical results show the superiority of the proposed algorithm over state-of-the-art methods.
arXiv Detail & Related papers (2023-08-02T13:30:33Z) - On Differential Privacy and Adaptive Data Analysis with Bounded Space [76.10334958368618]
We study the space complexity of the two related fields of differential privacy and adaptive data analysis.
We show that there exists a problem P that requires exponentially more space to be solved efficiently with differential privacy.
The line of work on adaptive data analysis focuses on understanding the number of samples needed for answering a sequence of adaptive queries.
arXiv Detail & Related papers (2023-02-11T14:45:31Z) - On PAC Learning Halfspaces in Non-interactive Local Privacy Model with
Public Unlabeled Data [18.820311737806456]
We study the problem of PAC learning halfspaces in the non-interactive local differential model (NLDP)
We show that it is possible to achieve sample complexities that are only linear in the dimension and in other terms for both private and public data.
arXiv Detail & Related papers (2022-09-17T12:19:20Z) - Differentially Private Stochastic Gradient Descent with Low-Noise [49.981789906200035]
Modern machine learning algorithms aim to extract fine-grained information from data to provide accurate predictions, which often conflicts with the goal of privacy protection.
This paper addresses the practical and theoretical importance of developing privacy-preserving machine learning algorithms that ensure good performance while preserving privacy.
arXiv Detail & Related papers (2022-09-09T08:54:13Z) - Learning with User-Level Privacy [61.62978104304273]
We analyze algorithms to solve a range of learning tasks under user-level differential privacy constraints.
Rather than guaranteeing only the privacy of individual samples, user-level DP protects a user's entire contribution.
We derive an algorithm that privately answers a sequence of $K$ adaptively chosen queries with privacy cost proportional to $tau$, and apply it to solve the learning tasks we consider.
arXiv Detail & Related papers (2021-02-23T18:25:13Z) - Private Reinforcement Learning with PAC and Regret Guarantees [69.4202374491817]
We design privacy preserving exploration policies for episodic reinforcement learning (RL)
We first provide a meaningful privacy formulation using the notion of joint differential privacy (JDP)
We then develop a private optimism-based learning algorithm that simultaneously achieves strong PAC and regret bounds, and enjoys a JDP guarantee.
arXiv Detail & Related papers (2020-09-18T20:18:35Z) - Differentially Private Clustering: Tight Approximation Ratios [57.89473217052714]
We give efficient differentially private algorithms for basic clustering problems.
Our results imply an improved algorithm for the Sample and Aggregate privacy framework.
One of the tools used in our 1-Cluster algorithm can be employed to get a faster quantum algorithm for ClosestPair in a moderate number of dimensions.
arXiv Detail & Related papers (2020-08-18T16:22:06Z) - Tighter Generalization Bounds for Iterative Differentially Private
Learning Algorithms [95.73230376153872]
This paper studies the relationship between generalization and privacy preservation in iterative learning algorithms by two sequential steps.
We prove that $(varepsilon, delta)$-differential privacy implies an on-average generalization bound for multi-Database learning algorithms.
We then investigate how the iterative nature shared by most learning algorithms influence privacy preservation and further generalization.
arXiv Detail & Related papers (2020-07-18T09:12:03Z) - Differentially private cross-silo federated learning [16.38610531397378]
Strict privacy is of paramount importance in distributed machine learning.
In this paper we combine additively homomorphic secure summation protocols with differential privacy in the so-called cross-silo federated learning setting.
We demonstrate that our proposed solutions give prediction accuracy that is comparable to the non-distributed setting.
arXiv Detail & Related papers (2020-07-10T18:15:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.