論文の概要: On Positive-Unlabeled Classification in GAN
- arxiv url: http://arxiv.org/abs/2002.01136v1
- Date: Tue, 4 Feb 2020 05:59:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-04 02:31:54.963727
- Title: On Positive-Unlabeled Classification in GAN
- Title(参考訳): GANにおける肯定的非ラベル分類について
- Authors: Tianyu Guo, Chang Xu, Jiajun Huang, Yunhe Wang, Boxin Shi, Chao Xu,
Dacheng Tao
- Abstract要約: 本稿では,標準GANに対する肯定的かつ未ラベルの分類問題を定義する。
その後、GANにおける差別者の訓練を安定させる新しい手法が導かれる。
- 参考スコア(独自算出の注目度): 130.43248168149432
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper defines a positive and unlabeled classification problem for
standard GANs, which then leads to a novel technique to stabilize the training
of the discriminator in GANs. Traditionally, real data are taken as positive
while generated data are negative. This positive-negative classification
criterion was kept fixed all through the learning process of the discriminator
without considering the gradually improved quality of generated data, even if
they could be more realistic than real data at times. In contrast, it is more
reasonable to treat the generated data as unlabeled, which could be positive or
negative according to their quality. The discriminator is thus a classifier for
this positive and unlabeled classification problem, and we derive a new
Positive-Unlabeled GAN (PUGAN). We theoretically discuss the global optimality
the proposed model will achieve and the equivalent optimization goal.
Empirically, we find that PUGAN can achieve comparable or even better
performance than those sophisticated discriminator stabilization methods.
- Abstract(参考訳): 本稿では,標準GANの正・負の分類問題を定義し,その上で,識別器のトレーニングを安定化させる新しい手法を提案する。
伝統的に、生成データは負である間、実際のデータは正とみなす。
この正負の分類基準は, 実データよりも現実的であっても, 生成データの品質を徐々に向上させることなく, 判別器の学習過程を通じて常に固定された。
対照的に、生成したデータをラベルなしとして扱う方が合理的であり、品質に応じて正または負の値になる可能性がある。
判別器はこの正・未ラベルの分類問題に対する分類器であり、新しい正の無ラベルGAN(PUGAN)を導出する。
提案モデルが達成する大域的最適性と同等の最適化目標について理論的に考察する。
PUGANは、これらの高度な判別器安定化手法と同等またはそれ以上の性能を達成できる。
関連論文リスト
- Safe Semi-Supervised Contrastive Learning Using In-Distribution Data as Positive Examples [3.4546761246181696]
本稿では,大量のラベルのないデータを完全に活用するための,自己教師付きコントラスト学習手法を提案する。
その結果,自己指導型コントラスト学習は分類精度を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2024-08-03T22:33:13Z) - PUAL: A Classifier on Trifurcate Positive-Unlabeled Data [29.617810881312867]
非対称損失(PUAL)を有するPU分類器を提案する。
我々は、PUALが非線形決定境界を得ることを可能にするカーネルベースのアルゴリズムを開発した。
シミュレーションと実世界の両方のデータセットの実験を通して、PUALはトリフルケートデータの良好な分類を実現できることを示す。
論文 参考訳(メタデータ) (2024-05-31T16:18:06Z) - GeT: Generative Target Structure Debiasing for Domain Adaptation [67.17025068995835]
ドメイン適応(DA)は、ドメインシフトの下で、完全にラベル付けされたソースからほとんどラベル付けされていない、または完全にラベル付けされていないターゲットに知識を転送することを目的としています。
近年,擬似ラベリングを利用した半教師付き学習(SSL)技術がDAでますます普及している。
本稿では,高品質な擬似ラベルを用いた非バイアス対象埋め込み分布を学習するGeTを提案する。
論文 参考訳(メタデータ) (2023-08-20T08:52:43Z) - Dist-PU: Positive-Unlabeled Learning from a Label Distribution
Perspective [89.5370481649529]
本稿では,PU学習のためのラベル分布視点を提案する。
そこで本研究では,予測型と基底型のラベル分布間のラベル分布の整合性を追求する。
提案手法の有効性を3つのベンチマークデータセットで検証した。
論文 参考訳(メタデータ) (2022-12-06T07:38:29Z) - NorMatch: Matching Normalizing Flows with Discriminative Classifiers for
Semi-Supervised Learning [8.749830466953584]
Semi-Supervised Learning (SSL)は、小さなラベル付きセットと大量のラベルなしデータを使ってモデルを学習することを目的としている。
この作業では、NorMatchというSSLの新しいフレームワークを紹介します。
数値的および視覚的な結果を通して、NorMatchはいくつかのデータセットで最先端のパフォーマンスを達成することを実証する。
論文 参考訳(メタデータ) (2022-11-17T15:39:18Z) - Learning From Positive and Unlabeled Data Using Observer-GAN [0.0]
正・未ラベルデータ(A.K.A. PU学習)から学習することの問題は、二項分類(正・負)において研究されている。
GAN(Generative Adversarial Networks)は、教師あり学習が分類タスクにおいて最先端の精度を持つという利点を生かして、教師あり設定に問題を還元するために使用されている。
論文 参考訳(メタデータ) (2022-08-26T07:35:28Z) - Positive-Unlabeled Classification under Class-Prior Shift: A
Prior-invariant Approach Based on Density Ratio Estimation [85.75352990739154]
密度比推定に基づく新しいPU分類法を提案する。
提案手法の顕著な利点は、訓練段階においてクラスプライヤを必要としないことである。
論文 参考訳(メタデータ) (2021-07-11T13:36:53Z) - In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label
Selection Framework for Semi-Supervised Learning [53.1047775185362]
Pseudo-labeling (PL) は一般的な SSL アプローチで、この制約はありませんが、当初の処方では比較的不十分です。
PLは不整合モデルからの誤った高い信頼度予測により性能が低下していると論じる。
そこで本研究では,疑似ラベリング精度を向上させるための不確実性認識型擬似ラベル選択(ups)フレームワークを提案する。
論文 参考訳(メタデータ) (2021-01-15T23:29:57Z) - Classify and Generate Reciprocally: Simultaneous Positive-Unlabelled
Learning and Conditional Generation with Extra Data [77.31213472792088]
クラスラベルデータの不足は、多くの機械学習問題において、ユビキタスなボトルネックとなっている。
本稿では, 正負ラベル付き(PU)分類と, 余分なラベル付きデータによる条件生成を活用することで, この問題に対処する。
本稿では,PU分類と条件生成を併用した新たなトレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-14T08:27:40Z) - Learning from Positive and Unlabeled Data with Arbitrary Positive Shift [11.663072799764542]
本稿では,未ラベルデータに対して任意の非表現陽性データであってもPU学習が可能であることを示す。
これを統計的に一貫した2つの手法に統合し、任意の正のバイアスに対処する。
実験により,多数の実世界のデータセットにまたがる手法の有効性が示された。
論文 参考訳(メタデータ) (2020-02-24T13:53:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。