Dropout Prediction over Weeks in MOOCs via Interpretable Multi-Layer
Representation Learning
- URL: http://arxiv.org/abs/2002.01598v1
- Date: Wed, 5 Feb 2020 01:15:34 GMT
- Title: Dropout Prediction over Weeks in MOOCs via Interpretable Multi-Layer
Representation Learning
- Authors: Byungsoo Jeon, Namyong Park, Seojin Bang
- Abstract summary: This paper aims to predict if a learner is going to drop out within the next week, given clickstream data for the current week.
We present a multi-layer representation learning solution based on branch and bound (BB) algorithm.
In experiments on Coursera data, we show that our model learns a representation that allows a simple model to perform similarly well to more complex, task-specific models.
- Score: 6.368257863961961
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Massive Open Online Courses (MOOCs) have become popular platforms for online
learning. While MOOCs enable students to study at their own pace, this
flexibility makes it easy for students to drop out of class. In this paper, our
goal is to predict if a learner is going to drop out within the next week,
given clickstream data for the current week. To this end, we present a
multi-layer representation learning solution based on branch and bound (BB)
algorithm, which learns from low-level clickstreams in an unsupervised manner,
produces interpretable results, and avoids manual feature engineering. In
experiments on Coursera data, we show that our model learns a representation
that allows a simple model to perform similarly well to more complex,
task-specific models, and how the BB algorithm enables interpretable results.
In our analysis of the observed limitations, we discuss promising future
directions.
Related papers
- Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
Machine unlearning -- efficiently removing a small "forget set" training data on a pre-divertrained machine learning model -- has recently attracted interest.
Recent research shows that machine unlearning techniques do not hold up in such a challenging setting.
arXiv Detail & Related papers (2024-10-30T17:20:10Z) - Querying Easily Flip-flopped Samples for Deep Active Learning [63.62397322172216]
Active learning is a machine learning paradigm that aims to improve the performance of a model by strategically selecting and querying unlabeled data.
One effective selection strategy is to base it on the model's predictive uncertainty, which can be interpreted as a measure of how informative a sample is.
This paper proposes the it least disagree metric (LDM) as the smallest probability of disagreement of the predicted label.
arXiv Detail & Related papers (2024-01-18T08:12:23Z) - Any-point Trajectory Modeling for Policy Learning [64.23861308947852]
We introduce Any-point Trajectory Modeling (ATM) to predict future trajectories of arbitrary points within a video frame.
ATM outperforms strong video pre-training baselines by 80% on average.
We show effective transfer learning of manipulation skills from human videos and videos from a different robot morphology.
arXiv Detail & Related papers (2023-12-28T23:34:43Z) - Enhancing the Performance of Automated Grade Prediction in MOOC using
Graph Representation Learning [3.4882560718166626]
Massive Open Online Courses (MOOCs) have gained significant traction as a rapidly growing phenomenon in online learning.
Current automated assessment approaches overlook the structural links between different entities involved in the downstream tasks.
We construct a unique knowledge graph for a large MOOC dataset, which will be publicly available to the research community.
arXiv Detail & Related papers (2023-10-18T19:27:39Z) - Language models are weak learners [71.33837923104808]
We show that prompt-based large language models can operate effectively as weak learners.
We incorporate these models into a boosting approach, which can leverage the knowledge within the model to outperform traditional tree-based boosting.
Results illustrate the potential for prompt-based LLMs to function not just as few-shot learners themselves, but as components of larger machine learning pipelines.
arXiv Detail & Related papers (2023-06-25T02:39:19Z) - Self-Damaging Contrastive Learning [92.34124578823977]
Unlabeled data in reality is commonly imbalanced and shows a long-tail distribution.
This paper proposes a principled framework called Self-Damaging Contrastive Learning to automatically balance the representation learning without knowing the classes.
Our experiments show that SDCLR significantly improves not only overall accuracies but also balancedness.
arXiv Detail & Related papers (2021-06-06T00:04:49Z) - Exploring Bayesian Deep Learning for Urgent Instructor Intervention Need
in MOOC Forums [58.221459787471254]
Massive Open Online Courses (MOOCs) have become a popular choice for e-learning thanks to their great flexibility.
Due to large numbers of learners and their diverse backgrounds, it is taxing to offer real-time support.
With the large volume of posts and high workloads for MOOC instructors, it is unlikely that the instructors can identify all learners requiring intervention.
This paper explores for the first time Bayesian deep learning on learner-based text posts with two methods: Monte Carlo Dropout and Variational Inference.
arXiv Detail & Related papers (2021-04-26T15:12:13Z) - Distill on the Go: Online knowledge distillation in self-supervised
learning [1.1470070927586016]
Recent works have shown that wider and deeper models benefit more from self-supervised learning than smaller models.
We propose Distill-on-the-Go (DoGo), a self-supervised learning paradigm using single-stage online knowledge distillation.
Our results show significant performance gain in the presence of noisy and limited labels.
arXiv Detail & Related papers (2021-04-20T09:59:23Z) - Active Learning in CNNs via Expected Improvement Maximization [2.0305676256390934]
"Dropout-based IMprOvementS" (DEIMOS) is a flexible and computationally-efficient approach to active learning.
Our results demonstrate that DEIMOS outperforms several existing baselines across multiple regression and classification tasks.
arXiv Detail & Related papers (2020-11-27T22:06:52Z) - Generative Adversarial Simulator [2.3986080077861787]
We introduce a simulator-free approach to knowledge distillation in the context of reinforcement learning.
A key challenge is having the student learn the multiplicity of cases that correspond to a given action.
This is the first demonstration of simulator-free knowledge distillation between a teacher and a student policy.
arXiv Detail & Related papers (2020-11-23T15:31:12Z) - Dropout Prediction over Weeks in MOOCs by Learning Representations of
Clicks and Videos [6.030785848148107]
We develop a method to learn representation for videos and the correlation between videos and clicks.
The results indicate that modeling videos and their correlation with clicks bring statistically significant improvements in predicting dropout.
arXiv Detail & Related papers (2020-02-05T19:10:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.