Self-Damaging Contrastive Learning
- URL: http://arxiv.org/abs/2106.02990v1
- Date: Sun, 6 Jun 2021 00:04:49 GMT
- Title: Self-Damaging Contrastive Learning
- Authors: Ziyu Jiang, Tianlong Chen, Bobak Mortazavi, Zhangyang Wang
- Abstract summary: Unlabeled data in reality is commonly imbalanced and shows a long-tail distribution.
This paper proposes a principled framework called Self-Damaging Contrastive Learning to automatically balance the representation learning without knowing the classes.
Our experiments show that SDCLR significantly improves not only overall accuracies but also balancedness.
- Score: 92.34124578823977
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The recent breakthrough achieved by contrastive learning accelerates the pace
for deploying unsupervised training on real-world data applications. However,
unlabeled data in reality is commonly imbalanced and shows a long-tail
distribution, and it is unclear how robustly the latest contrastive learning
methods could perform in the practical scenario. This paper proposes to
explicitly tackle this challenge, via a principled framework called
Self-Damaging Contrastive Learning (SDCLR), to automatically balance the
representation learning without knowing the classes. Our main inspiration is
drawn from the recent finding that deep models have difficult-to-memorize
samples, and those may be exposed through network pruning. It is further
natural to hypothesize that long-tail samples are also tougher for the model to
learn well due to insufficient examples. Hence, the key innovation in SDCLR is
to create a dynamic self-competitor model to contrast with the target model,
which is a pruned version of the latter. During training, contrasting the two
models will lead to adaptive online mining of the most easily forgotten samples
for the current target model, and implicitly emphasize them more in the
contrastive loss. Extensive experiments across multiple datasets and imbalance
settings show that SDCLR significantly improves not only overall accuracies but
also balancedness, in terms of linear evaluation on the full-shot and few-shot
settings. Our code is available at: https://github.com/VITA-Group/SDCLR.
Related papers
- Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
Adrial robustness has been conventionally believed as a challenging property to encode for neural networks.
We develop a scalable and model-agnostic solution to achieve adversarial robustness without using any data.
arXiv Detail & Related papers (2024-07-26T10:49:14Z) - Towards Robust Federated Learning via Logits Calibration on Non-IID Data [49.286558007937856]
Federated learning (FL) is a privacy-preserving distributed management framework based on collaborative model training of distributed devices in edge networks.
Recent studies have shown that FL is vulnerable to adversarial examples, leading to a significant drop in its performance.
In this work, we adopt the adversarial training (AT) framework to improve the robustness of FL models against adversarial example (AE) attacks.
arXiv Detail & Related papers (2024-03-05T09:18:29Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
Cross-modal retrieval relies on well-matched large-scale datasets that are laborious in practice.
We introduce a novel noisy correspondence learning framework, namely textbfSelf-textbfReinforcing textbfErrors textbfMitigation (SREM)
arXiv Detail & Related papers (2023-12-27T09:03:43Z) - Alleviating the Effect of Data Imbalance on Adversarial Training [26.36714114672729]
We study adversarial training on datasets that obey the long-tailed distribution.
We propose a new adversarial training framework -- Re-balancing Adversarial Training (REAT)
arXiv Detail & Related papers (2023-07-14T07:01:48Z) - Phantom Embeddings: Using Embedding Space for Model Regularization in
Deep Neural Networks [12.293294756969477]
The strength of machine learning models stems from their ability to learn complex function approximations from data.
The complex models tend to memorize the training data, which results in poor regularization performance on test data.
We present a novel approach to regularize the models by leveraging the information-rich latent embeddings and their high intra-class correlation.
arXiv Detail & Related papers (2023-04-14T17:15:54Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
Three simple ideas allow us to train models with DRO using a broader class of parametric likelihood ratios.
We find that models trained with the resulting parametric adversaries are consistently more robust to subpopulation shifts when compared to other DRO approaches.
arXiv Detail & Related papers (2022-04-13T12:43:12Z) - Quantifying and Mitigating Privacy Risks of Contrastive Learning [4.909548818641602]
We perform the first privacy analysis of contrastive learning through the lens of membership inference and attribute inference.
Our results show that contrastive models are less vulnerable to membership inference attacks but more vulnerable to attribute inference attacks compared to supervised models.
To remedy this situation, we propose the first privacy-preserving contrastive learning mechanism, namely Talos.
arXiv Detail & Related papers (2021-02-08T11:38:11Z) - Adversarial Self-Supervised Contrastive Learning [62.17538130778111]
Existing adversarial learning approaches mostly use class labels to generate adversarial samples that lead to incorrect predictions.
We propose a novel adversarial attack for unlabeled data, which makes the model confuse the instance-level identities of the perturbed data samples.
We present a self-supervised contrastive learning framework to adversarially train a robust neural network without labeled data.
arXiv Detail & Related papers (2020-06-13T08:24:33Z) - Imbalanced Data Learning by Minority Class Augmentation using Capsule
Adversarial Networks [31.073558420480964]
We propose a method to restore the balance in imbalanced images, by coalescing two concurrent methods.
In our model, generative and discriminative networks play a novel competitive game.
The coalescing of capsule-GAN is effective at recognizing highly overlapping classes with much fewer parameters compared with the convolutional-GAN.
arXiv Detail & Related papers (2020-04-05T12:36:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.