Casimir force between ideal metal plates in a chiral vacuum
- URL: http://arxiv.org/abs/2002.01719v2
- Date: Tue, 25 Feb 2020 10:37:50 GMT
- Title: Casimir force between ideal metal plates in a chiral vacuum
- Authors: Johan S. H{\o}ye and Iver Brevik
- Abstract summary: We show how the force can be found in a simple and compact way.
The expression for the force is in agreement with that obtained recently by Q.-D. Jiang and F. Wilczek [Phys. Rev. B bf 99, 125403], in their case with the use of Green function methods.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We calculate the Casimir force between two parallel ideal metal plates when
there is an intervening chiral medium present. Making use of methods of quantum
statistical mechanics we show how the force can be found in a simple and
compact way. The expression for the force is in agreement with that obtained
recently by Q.-D. Jiang and F. Wilczek [Phys. Rev. B {\bf 99}, 125403 (2019)],
in their case with the use of Green function methods.
Related papers
- Casimir Physics beyond the Proximity Force Approximation: The Derivative
Expansion [49.1574468325115]
We review the derivative expansion (DE) method in Casimir physics, an approach which extends the proximity force approximation (PFA)
We focus on different particular geometries, boundary conditions, types of fields, and quantum and thermal fluctuations.
arXiv Detail & Related papers (2024-02-27T19:56:52Z) - Van der Waals chain: a simple model for Casimir forces in dielectrics [0.0]
We develop a simple model for the Casimir forces inside a medium that is completely free of renormalization.
We argue that short-range counter forces in the medium prevent this collapse in reality.
Our model also allows us to derive an elementary analogue of the trace anomaly of quantum fields in curved space.
arXiv Detail & Related papers (2023-10-18T21:58:10Z) - Zero Casimir Force in Axion Electrodynamics and the Search for a New
Force [0.0]
We consider a concrete setup involving Weyl semimetals, which hosts an axion-like effect on the electromagnetism.
Our setup realizes zero Casimir force between metals and may be useful for the search for new force mediated by light particles at the micrometer scale.
arXiv Detail & Related papers (2023-02-28T15:37:42Z) - Correspondence Between the Energy Equipartition Theorem in Classical
Mechanics and its Phase-Space Formulation in Quantum Mechanics [62.997667081978825]
In quantum mechanics, the energy per degree of freedom is not equally distributed.
We show that in the high-temperature regime, the classical result is recovered.
arXiv Detail & Related papers (2022-05-24T20:51:03Z) - Regularized Zero-Range Hamiltonian for a Bose Gas with an Impurity [77.34726150561087]
We study the Hamiltonian for a system of N identical bosons interacting with an impurity.
We introduce a three-body force acting at short distances.
The effect of this force is to reduce to zero the strength of the zero-range interaction between two particles.
arXiv Detail & Related papers (2022-02-25T15:34:06Z) - Casimir effect for magnetic media: Spatially nonlocal response to the
off-shell quantum fluctuation [0.0]
We extend the Lifshitz theory of the Casimir force to the case of two parallel magnetic metal plates.
We compute the gradient of the Casimir force between Ni-coated surfaces of a sphere and a plate using the alternative nonlocal response functions.
arXiv Detail & Related papers (2021-10-04T09:50:58Z) - Casimir Puzzle and Casimir Conundrum: Discovery and Search for
Resolution [0.0]
The Casimir entropy calculated in the framework of the Lifshitz theory violates the Nernst heat theorem.
The review presents a summary of the main facts on this subject on both theoretical and experimental sides.
arXiv Detail & Related papers (2021-04-03T18:40:46Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Enhanced decoherence for a neutral particle sliding on a metallic
surface in vacuum [68.8204255655161]
We show that non-contact friction enhances the decoherence of the moving atom.
We suggest that measuring decoherence times through velocity dependence of coherences could indirectly demonstrate the existence of quantum friction.
arXiv Detail & Related papers (2020-11-06T17:34:35Z) - Strong geometry dependence of the Casimir force between interpenetrated
rectangular gratings [0.0]
Quantum fluctuations give rise to Casimir forces between two parallel conducting plates.
Recent advances have opened opportunities for controlling the Casimir force in complex geometries.
arXiv Detail & Related papers (2020-09-04T13:45:57Z) - Casimir force between Weyl semimetals in a chiral medium [68.8204255655161]
We study the Casimir effect in a system composed of two Weyl semimetals separated by a gap filled with a chiral medium.
We find that if the medium between the two WSMs is a Faraday material, a repulsive Casimir force can be obtained.
arXiv Detail & Related papers (2020-01-28T14:08:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.