I Know Where You Are Coming From: On the Impact of Social Media Sources
on AI Model Performance
- URL: http://arxiv.org/abs/2002.01726v1
- Date: Wed, 5 Feb 2020 11:10:44 GMT
- Title: I Know Where You Are Coming From: On the Impact of Social Media Sources
on AI Model Performance
- Authors: Qi Yang, Aleksandr Farseev, Andrey Filchenkov
- Abstract summary: We will study the performance of different machine learning models when being learned on multi-modal data from different social networks.
Our initial experimental results reveal that social network choice impacts the performance.
- Score: 79.05613148641018
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nowadays, social networks play a crucial role in human everyday life and no
longer purely associated with spare time spending. In fact, instant
communication with friends and colleagues has become an essential component of
our daily interaction giving a raise of multiple new social network types
emergence. By participating in such networks, individuals generate a multitude
of data points that describe their activities from different perspectives and,
for example, can be further used for applications such as personalized
recommendation or user profiling. However, the impact of the different social
media networks on machine learning model performance has not been studied
comprehensively yet. Particularly, the literature on modeling multi-modal data
from multiple social networks is relatively sparse, which had inspired us to
take a deeper dive into the topic in this preliminary study. Specifically, in
this work, we will study the performance of different machine learning models
when being learned on multi-modal data from different social networks. Our
initial experimental results reveal that social network choice impacts the
performance and the proper selection of data source is crucial.
Related papers
- SoMeLVLM: A Large Vision Language Model for Social Media Processing [78.47310657638567]
We introduce a Large Vision Language Model for Social Media Processing (SoMeLVLM)
SoMeLVLM is a cognitive framework equipped with five key capabilities including knowledge & comprehension, application, analysis, evaluation, and creation.
Our experiments demonstrate that SoMeLVLM achieves state-of-the-art performance in multiple social media tasks.
arXiv Detail & Related papers (2024-02-20T14:02:45Z) - Social-LLM: Modeling User Behavior at Scale using Language Models and
Social Network Data [13.660150473547766]
We introduce a novel approach tailored for modeling social network data in user detection tasks.
Our method integrates localized social network interactions with the capabilities of large language models.
We conduct a thorough evaluation of our method across seven real-world social network datasets.
arXiv Detail & Related papers (2023-12-31T05:13:13Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
We aim to identify the nonverbal cues and computational methodologies resulting in effective performance.
This survey differs from its counterparts by involving the widest spectrum of social phenomena and interaction settings.
Some major observations are: the most often used nonverbal cue, computational method, interaction environment, and sensing approach are speaking activity, support vector machines, and meetings composed of 3-4 persons equipped with microphones and cameras, respectively.
arXiv Detail & Related papers (2022-07-20T13:37:57Z) - Sparsity-aware neural user behavior modeling in online interaction
platforms [2.4036844268502766]
We develop generalizable neural representation learning frameworks for user behavior modeling.
Our problem settings span transductive and inductive learning scenarios.
We leverage different facets of information reflecting user behavior to enable personalized inference at scale.
arXiv Detail & Related papers (2022-02-28T00:27:11Z) - Analyzing Wikipedia Membership Dataset and PredictingUnconnected Nodes
in the Signed Networks [0.666659730119789]
We examine how relationships can be predicted between two unconnected people in a social network by using area under Precison-Recall curve and ROC.
Modeling the social network as a signed graph, we compare Triadic model,Latent Information model and Sentiment model and use them to predict peer to peer interactions.
arXiv Detail & Related papers (2021-10-18T09:03:18Z) - Two-Faced Humans on Twitter and Facebook: Harvesting Social Multimedia
for Human Personality Profiling [74.83957286553924]
We infer the Myers-Briggs Personality Type indicators by applying a novel multi-view fusion framework, called "PERS"
Our experimental results demonstrate the PERS's ability to learn from multi-view data for personality profiling by efficiently leveraging on the significantly different data arriving from diverse social multimedia sources.
arXiv Detail & Related papers (2021-06-20T10:48:49Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
We present an in-depth analysis of existing deep learning-based methods for modelling social interactions.
We propose two knowledge-based data-driven methods to effectively capture these social interactions.
We develop a large scale interaction-centric benchmark TrajNet++, a significant yet missing component in the field of human trajectory forecasting.
arXiv Detail & Related papers (2020-07-07T17:19:56Z) - DiffNet++: A Neural Influence and Interest Diffusion Network for Social
Recommendation [50.08581302050378]
Social recommendation has emerged to leverage social connections among users for predicting users' unknown preferences.
We propose a preliminary work of a neural influence diffusion network (i.e., DiffNet) for social recommendation (Diffnet)
In this paper, we propose DiffNet++, an improved algorithm of Diffnet that models the neural influence diffusion and interest diffusion in a unified framework.
arXiv Detail & Related papers (2020-01-15T08:45:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.