Social-LLM: Modeling User Behavior at Scale using Language Models and
Social Network Data
- URL: http://arxiv.org/abs/2401.00893v1
- Date: Sun, 31 Dec 2023 05:13:13 GMT
- Title: Social-LLM: Modeling User Behavior at Scale using Language Models and
Social Network Data
- Authors: Julie Jiang, Emilio Ferrara
- Abstract summary: We introduce a novel approach tailored for modeling social network data in user detection tasks.
Our method integrates localized social network interactions with the capabilities of large language models.
We conduct a thorough evaluation of our method across seven real-world social network datasets.
- Score: 13.660150473547766
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The proliferation of social network data has unlocked unprecedented
opportunities for extensive, data-driven exploration of human behavior. The
structural intricacies of social networks offer insights into various
computational social science issues, particularly concerning social influence
and information diffusion. However, modeling large-scale social network data
comes with computational challenges. Though large language models make it
easier than ever to model textual content, any advanced network representation
methods struggle with scalability and efficient deployment to out-of-sample
users. In response, we introduce a novel approach tailored for modeling social
network data in user detection tasks. This innovative method integrates
localized social network interactions with the capabilities of large language
models. Operating under the premise of social network homophily, which posits
that socially connected users share similarities, our approach is designed to
address these challenges. We conduct a thorough evaluation of our method across
seven real-world social network datasets, spanning a diverse range of topics
and detection tasks, showcasing its applicability to advance research in
computational social science.
Related papers
- Modeling Social Media Recommendation Impacts Using Academic Networks: A Graph Neural Network Approach [4.138915764680197]
This study proposes to use academic social networks as a proxy for investigating recommendation systems in social media.
By employing Graph Neural Networks (GNNs), we develop a model that separates the prediction of academic infosphere from behavior prediction.
Our approach aims to improve our understanding of recommendation systems' roles and social networks modeling.
arXiv Detail & Related papers (2024-10-06T17:03:27Z) - BotDGT: Dynamicity-aware Social Bot Detection with Dynamic Graph Transformers [34.517897902575946]
BotDGT is a novel framework that considers the topological structure, but also effectively incorporates dynamic nature of social network.
A structural module is employed to acquire topological information from each historical snapshot.
A temporal module is proposed to integrate historical context and model the evolving behavior patterns exhibited by social bots and legitimate users.
arXiv Detail & Related papers (2024-04-23T14:19:13Z) - Social Intelligence Data Infrastructure: Structuring the Present and Navigating the Future [59.78608958395464]
We build a Social AI Data Infrastructure, which consists of a comprehensive social AI taxonomy and a data library of 480 NLP datasets.
Our infrastructure allows us to analyze existing dataset efforts, and also evaluate language models' performance in different social intelligence aspects.
We show there is a need for multifaceted datasets, increased diversity in language and culture, more long-tailed social situations, and more interactive data in future social intelligence data efforts.
arXiv Detail & Related papers (2024-02-28T00:22:42Z) - Self-supervised Hypergraph Representation Learning for Sociological
Analysis [52.514283292498405]
We propose a fundamental methodology to support the further fusion of data mining techniques and sociological behavioral criteria.
First, we propose an effective hypergraph awareness and a fast line graph construction framework.
Second, we propose a novel hypergraph-based neural network to learn social influence flowing from users to users.
arXiv Detail & Related papers (2022-12-22T01:20:29Z) - Sparsity-aware neural user behavior modeling in online interaction
platforms [2.4036844268502766]
We develop generalizable neural representation learning frameworks for user behavior modeling.
Our problem settings span transductive and inductive learning scenarios.
We leverage different facets of information reflecting user behavior to enable personalized inference at scale.
arXiv Detail & Related papers (2022-02-28T00:27:11Z) - PHASE: PHysically-grounded Abstract Social Events for Machine Social
Perception [50.551003004553806]
We create a dataset of physically-grounded abstract social events, PHASE, that resemble a wide range of real-life social interactions.
Phase is validated with human experiments demonstrating that humans perceive rich interactions in the social events.
As a baseline model, we introduce a Bayesian inverse planning approach, SIMPLE, which outperforms state-of-the-art feed-forward neural networks.
arXiv Detail & Related papers (2021-03-02T18:44:57Z) - CommuNety: A Deep Learning System for the Prediction of Cohesive Social
Communities [14.839117147209603]
We propose CommuNety, a deep learning system for the prediction of cohesive social networks using images.
The proposed deep learning model consists of hierarchical CNN architecture to learn descriptive features related to each cohesive network.
The paper also proposes a novel Face Co-occurrence Frequency algorithm to quantify existence of people in images, and a novel photo ranking method to analyze the strength of relationship between different individuals in a predicted social network.
arXiv Detail & Related papers (2020-07-29T11:03:22Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
We present an in-depth analysis of existing deep learning-based methods for modelling social interactions.
We propose two knowledge-based data-driven methods to effectively capture these social interactions.
We develop a large scale interaction-centric benchmark TrajNet++, a significant yet missing component in the field of human trajectory forecasting.
arXiv Detail & Related papers (2020-07-07T17:19:56Z) - I Know Where You Are Coming From: On the Impact of Social Media Sources
on AI Model Performance [79.05613148641018]
We will study the performance of different machine learning models when being learned on multi-modal data from different social networks.
Our initial experimental results reveal that social network choice impacts the performance.
arXiv Detail & Related papers (2020-02-05T11:10:44Z) - DiffNet++: A Neural Influence and Interest Diffusion Network for Social
Recommendation [50.08581302050378]
Social recommendation has emerged to leverage social connections among users for predicting users' unknown preferences.
We propose a preliminary work of a neural influence diffusion network (i.e., DiffNet) for social recommendation (Diffnet)
In this paper, we propose DiffNet++, an improved algorithm of Diffnet that models the neural influence diffusion and interest diffusion in a unified framework.
arXiv Detail & Related papers (2020-01-15T08:45:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.