If I Hear You Correctly: Building and Evaluating Interview Chatbots with
Active Listening Skills
- URL: http://arxiv.org/abs/2002.01862v1
- Date: Wed, 5 Feb 2020 16:52:52 GMT
- Title: If I Hear You Correctly: Building and Evaluating Interview Chatbots with
Active Listening Skills
- Authors: Ziang Xiao, Michelle X. Zhou, Wenxi Chen, Huahai Yang, Changyan Chi
- Abstract summary: It is challenging to build effective interview chatbots that can handle user free-text responses to open-ended questions.
We are investigating the feasibility and effectiveness of using publicly available, practical AI technologies to build effective interview chatbots.
- Score: 4.395837214164745
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Interview chatbots engage users in a text-based conversation to draw out
their views and opinions. It is, however, challenging to build effective
interview chatbots that can handle user free-text responses to open-ended
questions and deliver engaging user experience. As the first step, we are
investigating the feasibility and effectiveness of using publicly available,
practical AI technologies to build effective interview chatbots. To demonstrate
feasibility, we built a prototype scoped to enable interview chatbots with a
subset of active listening skills - the abilities to comprehend a user's input
and respond properly. To evaluate the effectiveness of our prototype, we
compared the performance of interview chatbots with or without active listening
skills on four common interview topics in a live evaluation with 206 users. Our
work presents practical design implications for building effective interview
chatbots, hybrid chatbot platforms, and empathetic chatbots beyond interview
tasks.
Related papers
- LLM Roleplay: Simulating Human-Chatbot Interaction [52.03241266241294]
We propose a goal-oriented, persona-based method to automatically generate diverse multi-turn dialogues simulating human-chatbot interaction.
Our method can simulate human-chatbot dialogues with a high indistinguishability rate.
arXiv Detail & Related papers (2024-07-04T14:49:46Z) - Evaluating Chatbots to Promote Users' Trust -- Practices and Open
Problems [11.427175278545517]
This paper reviews current practices for testing chatbots.
It identifies gaps as open problems in pursuit of user trust.
It outlines a path forward to mitigate issues of trust related to service or product performance, user satisfaction and long-term unintended consequences for society.
arXiv Detail & Related papers (2023-09-09T22:40:30Z) - Interactive Conversational Head Generation [68.76774230274076]
We introduce a new conversation head generation benchmark for synthesizing behaviors of a single interlocutor in a face-to-face conversation.
The capability to automatically synthesize interlocutors which can participate in long and multi-turn conversations is vital and offer benefits for various applications.
arXiv Detail & Related papers (2023-07-05T08:06:26Z) - PLACES: Prompting Language Models for Social Conversation Synthesis [103.94325597273316]
We use a small set of expert-written conversations as in-context examples to synthesize a social conversation dataset using prompting.
We perform several thorough evaluations of our synthetic conversations compared to human-collected conversations.
arXiv Detail & Related papers (2023-02-07T05:48:16Z) - Leveraging Large Language Models to Power Chatbots for Collecting User
Self-Reported Data [15.808841433843742]
Large language models (LLMs) provide a new way to build chatbots by accepting natural language prompts.
We explore what design factors of prompts can help steer chatbots to talk naturally and collect data reliably.
arXiv Detail & Related papers (2023-01-14T07:29:36Z) - KETOD: Knowledge-Enriched Task-Oriented Dialogue [77.59814785157877]
Existing studies in dialogue system research mostly treat task-oriented dialogue and chit-chat as separate domains.
We investigate how task-oriented dialogue and knowledge-grounded chit-chat can be effectively integrated into a single model.
arXiv Detail & Related papers (2022-05-11T16:01:03Z) - CheerBots: Chatbots toward Empathy and Emotionusing Reinforcement
Learning [60.348822346249854]
This study presents a framework whereby several empathetic chatbots are based on understanding users' implied feelings and replying empathetically for multiple dialogue turns.
We call these chatbots CheerBots. CheerBots can be retrieval-based or generative-based and were finetuned by deep reinforcement learning.
To respond in an empathetic way, we develop a simulating agent, a Conceptual Human Model, as aids for CheerBots in training with considerations on changes in user's emotional states in the future to arouse sympathy.
arXiv Detail & Related papers (2021-10-08T07:44:47Z) - Addressing Inquiries about History: An Efficient and Practical Framework
for Evaluating Open-domain Chatbot Consistency [28.255324166852535]
We propose the Addressing Inquiries about History (AIH) framework for the consistency evaluation.
At the conversation stage, AIH attempts to address appropriate inquiries about the dialogue history to induce the chatbots to redeclare the historical facts or opinions.
At the contradiction recognition stage, we can either employ human judges or a natural language inference (NLI) model to recognize whether the answers to the inquiries are contradictory with history.
arXiv Detail & Related papers (2021-06-04T03:04:13Z) - Put Chatbot into Its Interlocutor's Shoes: New Framework to Learn
Chatbot Responding with Intention [55.77218465471519]
This paper proposes an innovative framework to train chatbots to possess human-like intentions.
Our framework included a guiding robot and an interlocutor model that plays the role of humans.
We examined our framework using three experimental setups and evaluate the guiding robot with four different metrics to demonstrated flexibility and performance advantages.
arXiv Detail & Related papers (2021-03-30T15:24:37Z) - A Scalable Chatbot Platform Leveraging Online Community Posts: A
Proof-of-Concept Study [4.623392924486831]
We verify the feasibility of constructing a data-driven chatbots with processed online community posts by using them as pseudo-conversational data.
We argue that chatbots for various purposes can be built extensively through the pipeline exploiting the common structure of community posts.
arXiv Detail & Related papers (2020-01-10T01:45:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.