Put Chatbot into Its Interlocutor's Shoes: New Framework to Learn
Chatbot Responding with Intention
- URL: http://arxiv.org/abs/2103.16429v3
- Date: Thu, 1 Apr 2021 03:42:16 GMT
- Title: Put Chatbot into Its Interlocutor's Shoes: New Framework to Learn
Chatbot Responding with Intention
- Authors: Hsuan Su, Jiun-Hao Jhan, Fan-yun Sun, Saurav Sahay, Hung-yi Lee
- Abstract summary: This paper proposes an innovative framework to train chatbots to possess human-like intentions.
Our framework included a guiding robot and an interlocutor model that plays the role of humans.
We examined our framework using three experimental setups and evaluate the guiding robot with four different metrics to demonstrated flexibility and performance advantages.
- Score: 55.77218465471519
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Most chatbot literature focuses on improving the fluency and coherence of a
chatbot, is dedicated to making chatbots more human-like. However, very little
work delves into what really separates humans from chatbots -- humans
intrinsically understand the effect their responses have on the interlocutor
and often respond with an intention such as proposing an optimistic view to
make the interlocutor feel better. This paper proposes an innovative framework
to train chatbots to possess human-like intentions. Our framework included a
guiding chatbot and an interlocutor model that plays the role of humans. The
guiding chatbot was assigned an intention and learned to induce the
interlocutor to reply with responses matching the intention, for example, long
responses, joyful responses, responses with specific words, etc. We examined
our framework using three experimental setups and evaluate the guiding chatbot
with four different metrics to demonstrated flexibility and performance
advantages. Additionally, human evaluation results sufficiently substantiate
the guiding chatbot's effectiveness in influencing humans' responses to a
certain extent. Code will be made available to the public.
Related papers
- LLM Roleplay: Simulating Human-Chatbot Interaction [52.03241266241294]
We propose a goal-oriented, persona-based method to automatically generate diverse multi-turn dialogues simulating human-chatbot interaction.
Our method can simulate human-chatbot dialogues with a high indistinguishability rate.
arXiv Detail & Related papers (2024-07-04T14:49:46Z) - PLACES: Prompting Language Models for Social Conversation Synthesis [103.94325597273316]
We use a small set of expert-written conversations as in-context examples to synthesize a social conversation dataset using prompting.
We perform several thorough evaluations of our synthetic conversations compared to human-collected conversations.
arXiv Detail & Related papers (2023-02-07T05:48:16Z) - Neural Generation Meets Real People: Building a Social, Informative
Open-Domain Dialogue Agent [65.68144111226626]
Chirpy Cardinal aims to be both informative and conversational.
We let both the user and bot take turns driving the conversation.
Chirpy Cardinal placed second out of nine bots in the Alexa Prize Socialbot Grand Challenge.
arXiv Detail & Related papers (2022-07-25T09:57:23Z) - A Deep Learning Approach to Integrate Human-Level Understanding in a
Chatbot [0.4632366780742501]
Unlike humans, chatbots can serve multiple customers at a time, are available 24/7 and reply in less than a fraction of a second.
We performed sentiment analysis, emotion detection, intent classification and named-entity recognition using deep learning to develop chatbots with humanistic understanding and intelligence.
arXiv Detail & Related papers (2021-12-31T22:26:41Z) - EmpBot: A T5-based Empathetic Chatbot focusing on Sentiments [75.11753644302385]
Empathetic conversational agents should not only understand what is being discussed, but also acknowledge the implied feelings of the conversation partner.
We propose a method based on a transformer pretrained language model (T5)
We evaluate our model on the EmpatheticDialogues dataset using both automated metrics and human evaluation.
arXiv Detail & Related papers (2021-10-30T19:04:48Z) - CheerBots: Chatbots toward Empathy and Emotionusing Reinforcement
Learning [60.348822346249854]
This study presents a framework whereby several empathetic chatbots are based on understanding users' implied feelings and replying empathetically for multiple dialogue turns.
We call these chatbots CheerBots. CheerBots can be retrieval-based or generative-based and were finetuned by deep reinforcement learning.
To respond in an empathetic way, we develop a simulating agent, a Conceptual Human Model, as aids for CheerBots in training with considerations on changes in user's emotional states in the future to arouse sympathy.
arXiv Detail & Related papers (2021-10-08T07:44:47Z) - Addressing Inquiries about History: An Efficient and Practical Framework
for Evaluating Open-domain Chatbot Consistency [28.255324166852535]
We propose the Addressing Inquiries about History (AIH) framework for the consistency evaluation.
At the conversation stage, AIH attempts to address appropriate inquiries about the dialogue history to induce the chatbots to redeclare the historical facts or opinions.
At the contradiction recognition stage, we can either employ human judges or a natural language inference (NLI) model to recognize whether the answers to the inquiries are contradictory with history.
arXiv Detail & Related papers (2021-06-04T03:04:13Z) - Spot The Bot: A Robust and Efficient Framework for the Evaluation of
Conversational Dialogue Systems [21.36935947626793]
emphSpot The Bot replaces human-bot conversations with conversations between bots.
Human judges only annotate for each entity in a conversation whether they think it is human or not.
emphSurvival Analysis measures which bot can uphold human-like behavior the longest.
arXiv Detail & Related papers (2020-10-05T16:37:52Z) - If I Hear You Correctly: Building and Evaluating Interview Chatbots with
Active Listening Skills [4.395837214164745]
It is challenging to build effective interview chatbots that can handle user free-text responses to open-ended questions.
We are investigating the feasibility and effectiveness of using publicly available, practical AI technologies to build effective interview chatbots.
arXiv Detail & Related papers (2020-02-05T16:52:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.