Vehicle Ego-Lane Estimation with Sensor Failure Modeling
- URL: http://arxiv.org/abs/2002.01913v2
- Date: Thu, 6 Feb 2020 15:06:49 GMT
- Title: Vehicle Ego-Lane Estimation with Sensor Failure Modeling
- Authors: Augusto Luis Ballardini, Daniele Cattaneo, Rub\'en Izquierdo, Ignacio
Parra Alonso, Andrea Piazzoni, Miguel \'Angel Sotelo, Domenico Giorgio
Sorrenti
- Abstract summary: We present a probabilistic ego-lane estimation algorithm for highway-like scenarios.
The contribution relies on a Hidden Markov Model (HMM) with a transient failure model.
The algorithm effectiveness is proven by employing different line detectors.
- Score: 6.0591945552030735
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present a probabilistic ego-lane estimation algorithm for highway-like
scenarios that is designed to increase the accuracy of the ego-lane estimate,
which can be obtained relying only on a noisy line detector and tracker. The
contribution relies on a Hidden Markov Model (HMM) with a transient failure
model. The proposed algorithm exploits the OpenStreetMap (or other cartographic
services) road property lane number as the expected number of lanes and
leverages consecutive, possibly incomplete, observations. The algorithm
effectiveness is proven by employing different line detectors and showing we
could achieve much more usable, i.e. stable and reliable, ego-lane estimates
over more than 100 Km of highway scenarios, recorded both in Italy and Spain.
Moreover, as we could not find a suitable dataset for a quantitative comparison
with other approaches, we collected datasets and manually annotated the Ground
Truth about the vehicle ego-lane. Such datasets are made publicly available for
usage from the scientific community.
Related papers
- Radio Map Estimation -- An Open Dataset with Directive Transmitter
Antennas and Initial Experiments [49.61405888107356]
We release a dataset of simulated path loss radio maps together with realistic city maps from real-world locations and aerial images from open datasources.
Initial experiments regarding model architectures, input feature design and estimation of radio maps from aerial images are presented.
arXiv Detail & Related papers (2024-01-12T14:56:45Z) - Is Ego Status All You Need for Open-Loop End-to-End Autonomous Driving? [84.17711168595311]
End-to-end autonomous driving has emerged as a promising research direction to target autonomy from a full-stack perspective.
nuScenes dataset, characterized by relatively simple driving scenarios, leads to an under-utilization of perception information in end-to-end models.
We introduce a new metric to evaluate whether the predicted trajectories adhere to the road.
arXiv Detail & Related papers (2023-12-05T11:32:31Z) - Unsupervised Self-Driving Attention Prediction via Uncertainty Mining
and Knowledge Embedding [51.8579160500354]
We propose an unsupervised way to predict self-driving attention by uncertainty modeling and driving knowledge integration.
Results show equivalent or even more impressive performance compared to fully-supervised state-of-the-art approaches.
arXiv Detail & Related papers (2023-03-17T00:28:33Z) - SODA10M: Towards Large-Scale Object Detection Benchmark for Autonomous
Driving [94.11868795445798]
We release a Large-Scale Object Detection benchmark for Autonomous driving, named as SODA10M, containing 10 million unlabeled images and 20K images labeled with 6 representative object categories.
To improve diversity, the images are collected every ten seconds per frame within 32 different cities under different weather conditions, periods and location scenes.
We provide extensive experiments and deep analyses of existing supervised state-of-the-art detection models, popular self-supervised and semi-supervised approaches, and some insights about how to develop future models.
arXiv Detail & Related papers (2021-06-21T13:55:57Z) - One Million Scenes for Autonomous Driving: ONCE Dataset [91.94189514073354]
We introduce the ONCE dataset for 3D object detection in the autonomous driving scenario.
The data is selected from 144 driving hours, which is 20x longer than the largest 3D autonomous driving dataset available.
We reproduce and evaluate a variety of self-supervised and semi-supervised methods on the ONCE dataset.
arXiv Detail & Related papers (2021-06-21T12:28:08Z) - Topo-boundary: A Benchmark Dataset on Topological Road-boundary
Detection Using Aerial Images for Autonomous Driving [11.576868193291997]
We propose a new benchmark dataset, named textitTopo-boundary, for off-line topological road-boundary detection.
The dataset contains 21,556 $1000times1000$-sized 4-channel aerial images.
We implement and evaluate 3 segmentation-based baselines and 5 graph-based baselines using the dataset.
arXiv Detail & Related papers (2021-03-31T14:42:00Z) - Large Scale Autonomous Driving Scenarios Clustering with Self-supervised
Feature Extraction [6.804209932400134]
This article proposes a comprehensive data clustering framework for a large set of vehicle driving data.
Our approach thoroughly considers the traffic elements, including both in-traffic agent objects and map information.
With the newly designed driving data clustering evaluation metrics based on data-augmentation, the accuracy assessment does not require a human-labeled data-set.
arXiv Detail & Related papers (2021-03-30T06:22:40Z) - Detecting 32 Pedestrian Attributes for Autonomous Vehicles [103.87351701138554]
In this paper, we address the problem of jointly detecting pedestrians and recognizing 32 pedestrian attributes.
We introduce a Multi-Task Learning (MTL) model relying on a composite field framework, which achieves both goals in an efficient way.
We show competitive detection and attribute recognition results, as well as a more stable MTL training.
arXiv Detail & Related papers (2020-12-04T15:10:12Z) - Probabilistic Multi-modal Trajectory Prediction with Lane Attention for
Autonomous Vehicles [10.485790589381704]
Trajectory prediction is crucial for autonomous vehicles.
We propose a novel instance-aware representation for lane representation.
We show that the proposed lane representation together with the lane attention module can be integrated into the widely used encoder-decoder framework.
arXiv Detail & Related papers (2020-07-06T07:57:23Z) - Map-Enhanced Ego-Lane Detection in the Missing Feature Scenarios [26.016292792373815]
This paper exploits prior knowledge contained in digital maps, which has a strong capability to enhance the performance of detection algorithms.
In this way, only a few lane features are needed to eliminate the position error between the road shape and the real lane.
Experiments show that the proposed method can be applied to various scenarios and can run in real-time at a frequency of 20 Hz.
arXiv Detail & Related papers (2020-04-02T16:06:48Z) - GISNet: Graph-Based Information Sharing Network For Vehicle Trajectory
Prediction [6.12727713172576]
Many AI-oriented companies, such as Google, Uber and DiDi, are investigating more accurate vehicle trajectory prediction algorithms.
In this paper, we propose a novel graph-based information sharing network (GISNet) that allows the information sharing between the target vehicle and its surrounding vehicles.
arXiv Detail & Related papers (2020-03-22T03:24:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.