Is Ego Status All You Need for Open-Loop End-to-End Autonomous Driving?
- URL: http://arxiv.org/abs/2312.03031v2
- Date: Sun, 2 Jun 2024 09:29:00 GMT
- Title: Is Ego Status All You Need for Open-Loop End-to-End Autonomous Driving?
- Authors: Zhiqi Li, Zhiding Yu, Shiyi Lan, Jiahan Li, Jan Kautz, Tong Lu, Jose M. Alvarez,
- Abstract summary: End-to-end autonomous driving has emerged as a promising research direction to target autonomy from a full-stack perspective.
nuScenes dataset, characterized by relatively simple driving scenarios, leads to an under-utilization of perception information in end-to-end models.
We introduce a new metric to evaluate whether the predicted trajectories adhere to the road.
- Score: 84.17711168595311
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: End-to-end autonomous driving recently emerged as a promising research direction to target autonomy from a full-stack perspective. Along this line, many of the latest works follow an open-loop evaluation setting on nuScenes to study the planning behavior. In this paper, we delve deeper into the problem by conducting thorough analyses and demystifying more devils in the details. We initially observed that the nuScenes dataset, characterized by relatively simple driving scenarios, leads to an under-utilization of perception information in end-to-end models incorporating ego status, such as the ego vehicle's velocity. These models tend to rely predominantly on the ego vehicle's status for future path planning. Beyond the limitations of the dataset, we also note that current metrics do not comprehensively assess the planning quality, leading to potentially biased conclusions drawn from existing benchmarks. To address this issue, we introduce a new metric to evaluate whether the predicted trajectories adhere to the road. We further propose a simple baseline able to achieve competitive results without relying on perception annotations. Given the current limitations on the benchmark and metrics, we suggest the community reassess relevant prevailing research and be cautious whether the continued pursuit of state-of-the-art would yield convincing and universal conclusions. Code and models are available at \url{https://github.com/NVlabs/BEV-Planner}
Related papers
- NAVSIM: Data-Driven Non-Reactive Autonomous Vehicle Simulation and Benchmarking [65.24988062003096]
We present NAVSIM, a framework for benchmarking vision-based driving policies.
Our simulation is non-reactive, i.e., the evaluated policy and environment do not influence each other.
NAVSIM enabled a new competition held at CVPR 2024, where 143 teams submitted 463 entries, resulting in several new insights.
arXiv Detail & Related papers (2024-06-21T17:59:02Z) - Enhancing End-to-End Autonomous Driving with Latent World Model [78.22157677787239]
We propose a novel self-supervised method to enhance end-to-end driving without the need for costly labels.
Our framework textbfLAW uses a LAtent World model to predict future latent features based on the predicted ego actions and the latent feature of the current frame.
As a result, our approach achieves state-of-the-art performance in both open-loop and closed-loop benchmarks without costly annotations.
arXiv Detail & Related papers (2024-06-12T17:59:21Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
Trajectory forecasting models, employed in fields such as robotics, autonomous vehicles, and navigation, face challenges in real-world scenarios.
This dataset provides comprehensive data, including the locations of all agents, scene images, and point clouds, all from the robot's perspective.
The objective is to predict the future positions of agents relative to the robot using raw sensory input data.
arXiv Detail & Related papers (2023-11-05T18:59:31Z) - Rethinking the Open-Loop Evaluation of End-to-End Autonomous Driving in
nuScenes [38.43491956142818]
Planning task involves predicting the trajectory of the ego vehicle based on inputs from both internal intention and the external environment.
Most existing works evaluate their performance on the nuScenes dataset using the L2 error and collision rate between the predicted trajectories and the ground truth.
In this paper, we reevaluate these existing evaluation metrics and explore whether they accurately measure the superiority of different methods.
Our simple method achieves similar end-to-end planning performance on the nuScenes dataset with other perception-based methods, reducing the average L2 error by about 20%.
arXiv Detail & Related papers (2023-05-17T17:59:11Z) - FollowMe: Vehicle Behaviour Prediction in Autonomous Vehicle Settings [2.294014185517203]
We introduce a new dataset, the FollowMe dataset, which offers a motion and behavior prediction problem.
We show the design benefits of FollowMe-STGCNN in capturing the interactions that lie within the dataset.
arXiv Detail & Related papers (2023-04-12T19:05:56Z) - 4Seasons: Benchmarking Visual SLAM and Long-Term Localization for
Autonomous Driving in Challenging Conditions [54.59279160621111]
We present a novel visual SLAM and long-term localization benchmark for autonomous driving in challenging conditions based on the large-scale 4Seasons dataset.
The proposed benchmark provides drastic appearance variations caused by seasonal changes and diverse weather and illumination conditions.
We introduce a new unified benchmark for jointly evaluating visual odometry, global place recognition, and map-based visual localization performance.
arXiv Detail & Related papers (2022-12-31T13:52:36Z) - LOKI: Long Term and Key Intentions for Trajectory Prediction [22.097307597204736]
Recent advances in trajectory prediction have shown that explicit reasoning about agents' intent is important to accurately forecast their motion.
We propose LOKI (LOng term and Key Intentions), a novel large-scale dataset that is designed to tackle joint trajectory and intention prediction.
We show our method outperforms state-of-the-art trajectory prediction methods by upto $27%$ and also provide a baseline for frame-wise intention estimation.
arXiv Detail & Related papers (2021-08-18T16:57:03Z) - Spatiotemporal Relationship Reasoning for Pedestrian Intent Prediction [57.56466850377598]
Reasoning over visual data is a desirable capability for robotics and vision-based applications.
In this paper, we present a framework on graph to uncover relationships in different objects in the scene for reasoning about pedestrian intent.
Pedestrian intent, defined as the future action of crossing or not-crossing the street, is a very crucial piece of information for autonomous vehicles.
arXiv Detail & Related papers (2020-02-20T18:50:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.