3DPIFCM Novel Algorithm for Segmentation of Noisy Brain MRI Images
- URL: http://arxiv.org/abs/2002.01985v2
- Date: Mon, 10 Feb 2020 19:22:59 GMT
- Title: 3DPIFCM Novel Algorithm for Segmentation of Noisy Brain MRI Images
- Authors: Arie Agranonik, Maya Herman, Mark Last
- Abstract summary: 3DPIFCM is an extension of a well-known IFCM (Improved Fuzzy C-Means) algorithm.
It performs fuzzy segmentation and introduces a fitness function that is affected by proximity of the voxels.
The 3DPIFCM algorithm uses PSO (Particle Swarm Optimization) in order to optimize the fitness function.
- Score: 3.3946853660795884
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel algorithm named 3DPIFCM, for automatic segmentation of
noisy MRI Brain images. The algorithm is an extension of a well-known IFCM
(Improved Fuzzy C-Means) algorithm. It performs fuzzy segmentation and
introduces a fitness function that is affected by proximity of the voxels and
by the color intensity in 3D images. The 3DPIFCM algorithm uses PSO (Particle
Swarm Optimization) in order to optimize the fitness function. In addition, the
3DPIFCM uses 3D features of near voxels to better adjust the noisy artifacts.
In our experiments, we evaluate 3DPIFCM on T1 Brainweb dataset with noise
levels ranging from 1% to 20% and on a synthetic dataset with ground truth both
in 3D. The analysis of the segmentation results shows a significant improvement
in the segmentation quality of up to 28% compared to two generic variants in
noisy images and up to 60% when compared to the original FCM (Fuzzy C-Means).
Related papers
- R$^2$-Gaussian: Rectifying Radiative Gaussian Splatting for Tomographic Reconstruction [53.19869886963333]
3D Gaussian splatting (3DGS) has shown promising results in rendering image and surface reconstruction.
This paper introduces R2$-Gaussian, the first 3DGS-based framework for sparse-view tomographic reconstruction.
arXiv Detail & Related papers (2024-05-31T08:39:02Z) - Generalization of pixel-wise phase estimation by CNN and improvement of
phase-unwrapping by MRF optimization for one-shot 3D scan [0.621405559652172]
Active stereo technique using single pattern projection, a.k.a. one-shot 3D scan, have drawn a wide attention from industry, medical purposes, etc.
One severe drawback of one-shot 3D scan is sparse reconstruction.
We propose a pixel-wise technique for one-shot scan, which is applicable to any types of static pattern if the pattern is regular and periodic.
arXiv Detail & Related papers (2023-09-26T10:45:04Z) - Image Reconstruction for Accelerated MR Scan with Faster Fourier
Convolutional Neural Networks [87.87578529398019]
Partial scan is a common approach to accelerate Magnetic Resonance Imaging (MRI) data acquisition in both 2D and 3D settings.
We propose a novel convolutional operator called Faster Fourier Convolution (FasterFC) to replace the two consecutive convolution operations.
A 2D accelerated MRI method, FasterFC-End-to-End-VarNet, which uses FasterFC to improve the sensitivity maps and reconstruction quality.
A 3D accelerated MRI method called FasterFC-based Single-to-group Network (FAS-Net) that utilizes a single-to-group algorithm to guide k-space domain reconstruction
arXiv Detail & Related papers (2023-06-05T13:53:57Z) - UNETR++: Delving into Efficient and Accurate 3D Medical Image Segmentation [93.88170217725805]
We propose a 3D medical image segmentation approach, named UNETR++, that offers both high-quality segmentation masks as well as efficiency in terms of parameters, compute cost, and inference speed.
The core of our design is the introduction of a novel efficient paired attention (EPA) block that efficiently learns spatial and channel-wise discriminative features.
Our evaluations on five benchmarks, Synapse, BTCV, ACDC, BRaTs, and Decathlon-Lung, reveal the effectiveness of our contributions in terms of both efficiency and accuracy.
arXiv Detail & Related papers (2022-12-08T18:59:57Z) - Lightweight 3D Convolutional Neural Network for Schizophrenia diagnosis
using MRI Images and Ensemble Bagging Classifier [1.487444917213389]
This paper proposed a lightweight 3D convolutional neural network (CNN) based framework for schizophrenia diagnosis using MRI images.
The model achieves the highest accuracy 92.22%, sensitivity 94.44%, specificity 90%, precision 90.43%, recall 94.44%, F1-score 92.39% and G-mean 92.19% as compared to the current state-of-the-art techniques.
arXiv Detail & Related papers (2022-11-05T10:27:37Z) - GPU optimization of the 3D Scale-invariant Feature Transform Algorithm
and a Novel BRIEF-inspired 3D Fast Descriptor [5.1537294207900715]
This work details a highly efficient implementation of the 3D scale-invariant feature transform (SIFT) algorithm, for the purpose of machine learning from large sets of medical image data.
The primary operations of the 3D SIFT code are implemented on a graphics processing unit (GPU), including convolution, sub-sampling, and 4D peak detection from scale-space pyramids.
The performance improvements are quantified in keypoint detection and image-to-image matching experiments, using 3D MRI human brain volumes of different people.
arXiv Detail & Related papers (2021-12-19T20:56:40Z) - Generalizing Face Forgery Detection with High-frequency Features [63.33397573649408]
Current CNN-based detectors tend to overfit to method-specific color textures and thus fail to generalize.
We propose to utilize the high-frequency noises for face forgery detection.
The first is the multi-scale high-frequency feature extraction module that extracts high-frequency noises at multiple scales.
The second is the residual-guided spatial attention module that guides the low-level RGB feature extractor to concentrate more on forgery traces from a new perspective.
arXiv Detail & Related papers (2021-03-23T08:19:21Z) - Convolutional 3D to 2D Patch Conversion for Pixel-wise Glioma
Segmentation in MRI Scans [22.60715394470069]
We devise a novel pixel-wise segmentation framework through a convolutional 3D to 2D MR patch conversion model.
In our architecture, both local inter-slice and global intra-slice features are jointly exploited to predict class label of the central voxel in a given patch.
arXiv Detail & Related papers (2020-10-20T20:42:52Z) - Human Body Model Fitting by Learned Gradient Descent [48.79414884222403]
We propose a novel algorithm for the fitting of 3D human shape to images.
We show that this algorithm is fast (avg. 120ms convergence), robust to dataset, and achieves state-of-the-art results on public evaluation datasets.
arXiv Detail & Related papers (2020-08-19T14:26:47Z) - Real-time Dense Reconstruction of Tissue Surface from Stereo Optical
Video [10.181846237133167]
We propose an approach to reconstruct dense three-dimensional (3D) model of tissue surface from stereo optical videos in real-time.
The basic idea is to first extract 3D information from video frames by using stereo matching, and then to mosaic the reconstructed 3D models.
Experimental results on ex- and in vivo data showed that the reconstructed 3D models have high resolution texture with an accuracy error of less than 2 mm.
arXiv Detail & Related papers (2020-07-16T19:14:05Z) - Kullback-Leibler Divergence-Based Fuzzy $C$-Means Clustering
Incorporating Morphological Reconstruction and Wavelet Frames for Image
Segmentation [152.609322951917]
We come up with a Kullback-Leibler (KL) divergence-based Fuzzy C-Means (FCM) algorithm by incorporating a tight wavelet frame transform and a morphological reconstruction operation.
The proposed algorithm works well and comes with better segmentation performance than other comparative algorithms.
arXiv Detail & Related papers (2020-02-21T05:19:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.