Lightweight 3D Convolutional Neural Network for Schizophrenia diagnosis
using MRI Images and Ensemble Bagging Classifier
- URL: http://arxiv.org/abs/2211.02868v1
- Date: Sat, 5 Nov 2022 10:27:37 GMT
- Title: Lightweight 3D Convolutional Neural Network for Schizophrenia diagnosis
using MRI Images and Ensemble Bagging Classifier
- Authors: P Supriya Patro, Tripti Goel, S A VaraPrasad, M Tanveer, R Murugan
- Abstract summary: This paper proposed a lightweight 3D convolutional neural network (CNN) based framework for schizophrenia diagnosis using MRI images.
The model achieves the highest accuracy 92.22%, sensitivity 94.44%, specificity 90%, precision 90.43%, recall 94.44%, F1-score 92.39% and G-mean 92.19% as compared to the current state-of-the-art techniques.
- Score: 1.487444917213389
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Structural alterations have been thoroughly investigated in the brain during
the early onset of schizophrenia (SCZ) with the development of neuroimaging
methods. The objective of the paper is an efficient classification of SCZ in 2
different classes: Cognitive Normal (CN), and SCZ using magnetic resonance
imaging (MRI) images. This paper proposed a lightweight 3D convolutional neural
network (CNN) based framework for SCZ diagnosis using MRI images. In the
proposed model, lightweight 3D CNN is used to extract both spatial and spectral
features simultaneously from 3D volume MRI scans, and classification is done
using an ensemble bagging classifier. Ensemble bagging classifier contributes
to preventing overfitting, reduces variance, and improves the model's accuracy.
The proposed algorithm is tested on datasets taken from three benchmark
databases available as open-source: MCICShare, COBRE, and fBRINPhase-II. These
datasets have undergone preprocessing steps to register all the MRI images to
the standard template and reduce the artifacts. The model achieves the highest
accuracy 92.22%, sensitivity 94.44%, specificity 90%, precision 90.43%, recall
94.44%, F1-score 92.39% and G-mean 92.19% as compared to the current
state-of-the-art techniques. The performance metrics evidenced the use of this
model to assist the clinicians for automatic accurate diagnosis of SCZ.
Related papers
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
Deep neural networks have shown great potential for reconstructing high-fidelity images from undersampled measurements.
Our model is based on neural operators, a discretization-agnostic architecture.
Our inference speed is also 1,400x faster than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Efficient Slice Anomaly Detection Network for 3D Brain MRI Volume [2.3633885460047765]
Current anomaly detection methods excel with benchmark industrial data but struggle with medical data due to varying definitions of 'normal' and 'abnormal'
We propose a framework called Simple Slice-based Network (SimpleSliceNet), which utilizes a model pre-trained on ImageNet and fine-tuned on a separate MRI dataset as a 2D slice feature extractor to reduce computational cost.
arXiv Detail & Related papers (2024-08-28T17:20:56Z) - Exploration of Multi-Scale Image Fusion Systems in Intelligent Medical Image Analysis [3.881664394416534]
It is necessary to perform automatic segmentation of brain tumors on MRI images.
This project intends to build an MRI algorithm based on U-Net.
arXiv Detail & Related papers (2024-05-23T04:33:12Z) - An L2-Normalized Spatial Attention Network For Accurate And Fast
Classification Of Brain Tumors In 2D T1-Weighted CE-MRI Images [21.369333654766233]
We propose an accurate and fast classification network for classification of brain tumors in MRI images.
We test our model on a challenging 2D T1-weighted CE-MRI dataset containing three types of brain tumors.
arXiv Detail & Related papers (2023-08-01T12:22:58Z) - Video4MRI: An Empirical Study on Brain Magnetic Resonance Image
Analytics with CNN-based Video Classification Frameworks [60.42012344842292]
3D CNN-based models dominate the field of magnetic resonance image (MRI) analytics.
In this paper, four datasets of Alzheimer's and Parkinson's disease recognition are utilized in experiments.
In terms of efficiency, the video framework performs better than 3D-CNN models by 5% - 11% with 50% - 66% less trainable parameters.
arXiv Detail & Related papers (2023-02-24T15:26:31Z) - Acute ischemic stroke lesion segmentation in non-contrast CT images
using 3D convolutional neural networks [0.0]
We propose an automatic algorithm aimed at volumetric segmentation of acute ischemic stroke lesion in non-contrast computed tomography brain 3D images.
Our deep-learning approach is based on the popular 3D U-Net convolutional neural network architecture.
arXiv Detail & Related papers (2023-01-17T10:39:39Z) - CNN-based fully automatic wrist cartilage volume quantification in MR
Image [55.41644538483948]
The U-net convolutional neural network with additional attention layers provides the best wrist cartilage segmentation performance.
The error of cartilage volume measurement should be assessed independently using a non-MRI method.
arXiv Detail & Related papers (2022-06-22T14:19:06Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
Motion artefacts in magnetic resonance brain images are a crucial issue.
The assessment of MR image quality is fundamental before proceeding with the clinical diagnosis.
An automated image quality assessment based on the structural similarity index (SSIM) regression has been proposed here.
arXiv Detail & Related papers (2022-06-14T10:16:54Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
We propose a differentiable neural architecture search (DNAS) framework to automatically search for the 3D DL models for 3D chest CT scans classification.
We also exploit the Class Activation Mapping (CAM) technique on our models to provide the interpretability of the results.
arXiv Detail & Related papers (2021-01-14T03:45:01Z) - MRI brain tumor segmentation and uncertainty estimation using 3D-UNet
architectures [0.0]
This work studies 3D encoder-decoder architectures trained with patch-based techniques to reduce memory consumption and decrease the effect of unbalanced data.
We also introduce voxel-wise uncertainty information, both epistemic and aleatoric using test-time dropout (TTD) and data-augmentation (TTA) respectively.
The model and uncertainty estimation measurements proposed in this work have been used in the BraTS'20 Challenge for task 1 and 3 regarding tumor segmentation and uncertainty estimation.
arXiv Detail & Related papers (2020-12-30T19:28:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.