Unsupervised Bidirectional Cross-Modality Adaptation via Deeply
Synergistic Image and Feature Alignment for Medical Image Segmentation
- URL: http://arxiv.org/abs/2002.02255v1
- Date: Thu, 6 Feb 2020 13:49:47 GMT
- Title: Unsupervised Bidirectional Cross-Modality Adaptation via Deeply
Synergistic Image and Feature Alignment for Medical Image Segmentation
- Authors: Cheng Chen, Qi Dou, Hao Chen, Jing Qin, Pheng Ann Heng
- Abstract summary: We present a novel unsupervised domain adaptation framework, named as Synergistic Image and Feature Alignment (SIFA)
Our proposed SIFA conducts synergistic alignment of domains from both image and feature perspectives.
Experimental results on two different tasks demonstrate that our SIFA method is effective in improving segmentation performance on unlabeled target images.
- Score: 73.84166499988443
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised domain adaptation has increasingly gained interest in medical
image computing, aiming to tackle the performance degradation of deep neural
networks when being deployed to unseen data with heterogeneous characteristics.
In this work, we present a novel unsupervised domain adaptation framework,
named as Synergistic Image and Feature Alignment (SIFA), to effectively adapt a
segmentation network to an unlabeled target domain. Our proposed SIFA conducts
synergistic alignment of domains from both image and feature perspectives. In
particular, we simultaneously transform the appearance of images across domains
and enhance domain-invariance of the extracted features by leveraging
adversarial learning in multiple aspects and with a deeply supervised
mechanism. The feature encoder is shared between both adaptive perspectives to
leverage their mutual benefits via end-to-end learning. We have extensively
evaluated our method with cardiac substructure segmentation and abdominal
multi-organ segmentation for bidirectional cross-modality adaptation between
MRI and CT images. Experimental results on two different tasks demonstrate that
our SIFA method is effective in improving segmentation performance on unlabeled
target images, and outperforms the state-of-the-art domain adaptation
approaches by a large margin.
Related papers
- Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - MSCDA: Multi-level Semantic-guided Contrast Improves Unsupervised Domain
Adaptation for Breast MRI Segmentation in Small Datasets [5.272836235045653]
We propose a novel Multi-level Semantic-guided Contrastive Domain Adaptation framework.
Our approach incorporates self-training with contrastive learning to align feature representations between domains.
In particular, we extend the contrastive loss by incorporating pixel-to-pixel, pixel-to-centroid, and centroid-to-centroid contrasts.
arXiv Detail & Related papers (2023-01-04T19:16:55Z) - PiPa: Pixel- and Patch-wise Self-supervised Learning for Domain
Adaptative Semantic Segmentation [100.6343963798169]
Unsupervised Domain Adaptation (UDA) aims to enhance the generalization of the learned model to other domains.
We propose a unified pixel- and patch-wise self-supervised learning framework, called PiPa, for domain adaptive semantic segmentation.
arXiv Detail & Related papers (2022-11-14T18:31:24Z) - Self-semantic contour adaptation for cross modality brain tumor
segmentation [13.260109561599904]
We propose exploiting low-level edge information to facilitate the adaptation as a precursor task.
The precise contour then provides spatial information to guide the semantic adaptation.
We evaluate our framework on the BraTS2018 database for cross-modality segmentation of brain tumors.
arXiv Detail & Related papers (2022-01-13T15:16:55Z) - Unsupervised Domain Adaptation with Semantic Consistency across
Heterogeneous Modalities for MRI Prostate Lesion Segmentation [19.126306953075275]
We introduce two new loss functions that promote semantic consistency.
In particular, we address the challenge of enhancing performance on VERDICT-MRI, an advanced diffusion-weighted imaging technique.
arXiv Detail & Related papers (2021-09-19T17:33:26Z) - Unsupervised Domain Adaptation with Variational Approximation for
Cardiac Segmentation [15.2292571922932]
Unsupervised domain adaptation is useful in medical image segmentation.
We propose a new framework, where the latent features of both domains are driven towards a common and parameterized variational form.
This is achieved by two networks based on variational auto-encoders (VAEs) and a regularization for this variational approximation.
arXiv Detail & Related papers (2021-06-16T13:00:39Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
In this paper, we propose a novel Bidirectional Global-to-Local (BiGL) adaptation framework under a UDA scheme.
Specifically, a bidirectional image synthesis and segmentation module is proposed to segment the brain tumor.
The proposed method outperforms several state-of-the-art unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2021-05-17T10:11:45Z) - Margin Preserving Self-paced Contrastive Learning Towards Domain
Adaptation for Medical Image Segmentation [51.93711960601973]
We propose a novel margin preserving self-paced contrastive Learning model for cross-modal medical image segmentation.
With the guidance of progressively refined semantic prototypes, a novel margin preserving contrastive loss is proposed to boost the discriminability of embedded representation space.
Experiments on cross-modal cardiac segmentation tasks demonstrate that MPSCL significantly improves semantic segmentation performance.
arXiv Detail & Related papers (2021-03-15T15:23:10Z) - Unsupervised Instance Segmentation in Microscopy Images via Panoptic
Domain Adaptation and Task Re-weighting [86.33696045574692]
We propose a Cycle Consistency Panoptic Domain Adaptive Mask R-CNN (CyC-PDAM) architecture for unsupervised nuclei segmentation in histopathology images.
We first propose a nuclei inpainting mechanism to remove the auxiliary generated objects in the synthesized images.
Secondly, a semantic branch with a domain discriminator is designed to achieve panoptic-level domain adaptation.
arXiv Detail & Related papers (2020-05-05T11:08:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.