Unsupervised Domain Adaptation with Semantic Consistency across
Heterogeneous Modalities for MRI Prostate Lesion Segmentation
- URL: http://arxiv.org/abs/2109.09736v1
- Date: Sun, 19 Sep 2021 17:33:26 GMT
- Title: Unsupervised Domain Adaptation with Semantic Consistency across
Heterogeneous Modalities for MRI Prostate Lesion Segmentation
- Authors: Eleni Chiou, Francesco Giganti, Shonit Punwani, Iasonas Kokkinos, and
Eleftheria Panagiotaki
- Abstract summary: We introduce two new loss functions that promote semantic consistency.
In particular, we address the challenge of enhancing performance on VERDICT-MRI, an advanced diffusion-weighted imaging technique.
- Score: 19.126306953075275
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Any novel medical imaging modality that differs from previous protocols e.g.
in the number of imaging channels, introduces a new domain that is
heterogeneous from previous ones. This common medical imaging scenario is
rarely considered in the domain adaptation literature, which handles shifts
across domains of the same dimensionality. In our work we rely on stochastic
generative modeling to translate across two heterogeneous domains at pixel
space and introduce two new loss functions that promote semantic consistency.
Firstly, we introduce a semantic cycle-consistency loss in the source domain to
ensure that the translation preserves the semantics. Secondly, we introduce a
pseudo-labelling loss, where we translate target data to source, label them by
a source-domain network, and use the generated pseudo-labels to supervise the
target-domain network. Our results show that this allows us to extract
systematically better representations for the target domain. In particular, we
address the challenge of enhancing performance on VERDICT-MRI, an advanced
diffusion-weighted imaging technique, by exploiting labeled mp-MRI data. When
compared to several unsupervised domain adaptation approaches, our approach
yields substantial improvements, that consistently carry over to the
semi-supervised and supervised learning settings.
Related papers
- Unsupervised Federated Domain Adaptation for Segmentation of MRI Images [20.206972068340843]
We develop a method for unsupervised federated domain adaptation using multiple annotated source domains.
Our approach enables the transfer of knowledge from several annotated source domains to adapt a model for effective use in an unannotated target domain.
arXiv Detail & Related papers (2024-01-02T00:31:41Z) - Adaptive Face Recognition Using Adversarial Information Network [57.29464116557734]
Face recognition models often degenerate when training data are different from testing data.
We propose a novel adversarial information network (AIN) to address it.
arXiv Detail & Related papers (2023-05-23T02:14:11Z) - Unsupervised Domain Adaptation for Semantic Segmentation using One-shot
Image-to-Image Translation via Latent Representation Mixing [9.118706387430883]
We propose a new unsupervised domain adaptation method for the semantic segmentation of very high resolution images.
An image-to-image translation paradigm is proposed, based on an encoder-decoder principle where latent content representations are mixed across domains.
Cross-city comparative experiments have shown that the proposed method outperforms state-of-the-art domain adaptation methods.
arXiv Detail & Related papers (2022-12-07T18:16:17Z) - Cyclically Disentangled Feature Translation for Face Anti-spoofing [61.70377630461084]
We propose a novel domain adaptation method called cyclically disentangled feature translation network (CDFTN)
CDFTN generates pseudo-labeled samples that possess: 1) source domain-invariant liveness features and 2) target domain-specific content features, which are disentangled through domain adversarial training.
A robust classifier is trained based on the synthetic pseudo-labeled images under the supervision of source domain labels.
arXiv Detail & Related papers (2022-12-07T14:12:34Z) - Target and Task specific Source-Free Domain Adaptive Image Segmentation [73.78898054277538]
We propose a two-stage approach for source-free domain adaptive image segmentation.
We focus on generating target-specific pseudo labels while suppressing high entropy regions.
In the second stage, we focus on adapting the network for task-specific representation.
arXiv Detail & Related papers (2022-03-29T17:50:22Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
In this paper, we propose a novel Bidirectional Global-to-Local (BiGL) adaptation framework under a UDA scheme.
Specifically, a bidirectional image synthesis and segmentation module is proposed to segment the brain tumor.
The proposed method outperforms several state-of-the-art unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2021-05-17T10:11:45Z) - Adapt Everywhere: Unsupervised Adaptation of Point-Clouds and Entropy
Minimisation for Multi-modal Cardiac Image Segmentation [10.417009344120917]
We present a novel UDA method for multi-modal cardiac image segmentation.
The proposed method is based on adversarial learning and adapts network features between source and target domain in different spaces.
We validated our method on two cardiac datasets by adapting from the annotated source domain to the unannotated target domain.
arXiv Detail & Related papers (2021-03-15T08:59:44Z) - Privacy Preserving Domain Adaptation for Semantic Segmentation of
Medical Images [13.693640425403636]
Unsupervised domain adaptation (UDA) is proposed to adapt a model to new modalities using solely unlabeled target domain data.
We develop an algorithm for UDA in a privacy-constrained setting, where the source domain data is inaccessible.
We demonstrate the effectiveness of our algorithm by comparing it to state-of-the-art medical image semantic segmentation approaches.
arXiv Detail & Related papers (2021-01-02T22:12:42Z) - Unsupervised Bidirectional Cross-Modality Adaptation via Deeply
Synergistic Image and Feature Alignment for Medical Image Segmentation [73.84166499988443]
We present a novel unsupervised domain adaptation framework, named as Synergistic Image and Feature Alignment (SIFA)
Our proposed SIFA conducts synergistic alignment of domains from both image and feature perspectives.
Experimental results on two different tasks demonstrate that our SIFA method is effective in improving segmentation performance on unlabeled target images.
arXiv Detail & Related papers (2020-02-06T13:49:47Z) - CrDoCo: Pixel-level Domain Transfer with Cross-Domain Consistency [119.45667331836583]
Unsupervised domain adaptation algorithms aim to transfer the knowledge learned from one domain to another.
We present a novel pixel-wise adversarial domain adaptation algorithm.
arXiv Detail & Related papers (2020-01-09T19:00:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.