論文の概要: Message Passing Query Embedding
- arxiv url: http://arxiv.org/abs/2002.02406v2
- Date: Wed, 24 Jun 2020 11:35:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-03 09:34:30.750037
- Title: Message Passing Query Embedding
- Title(参考訳): メッセージパッシングクエリの埋め込み
- Authors: Daniel Daza and Michael Cochez
- Abstract要約: 本稿では,クエリのグラフ表現を符号化するグラフニューラルネットワークを提案する。
モデルは、明示的な監督なしにエンティティタイプの概念を捉えたエンティティ埋め込みを学習することを示します。
- 参考スコア(独自算出の注目度): 4.035753155957698
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent works on representation learning for Knowledge Graphs have moved
beyond the problem of link prediction, to answering queries of an arbitrary
structure. Existing methods are based on ad-hoc mechanisms that require
training with a diverse set of query structures. We propose a more general
architecture that employs a graph neural network to encode a graph
representation of the query, where nodes correspond to entities and variables.
The generality of our method allows it to encode a more diverse set of query
types in comparison to previous work. Our method shows competitive performance
against previous models for complex queries, and in contrast with these models,
it can answer complex queries when trained for link prediction only. We show
that the model learns entity embeddings that capture the notion of entity type
without explicit supervision.
- Abstract(参考訳): 知識グラフの表現学習に関する最近の研究は、リンク予測の問題を超えて、任意の構造のクエリに答えている。
既存の方法は、様々なクエリ構造でトレーニングを必要とするアドホックなメカニズムに基づいている。
本稿では,グラフニューラルネットワークを用いてクエリのグラフ表現を符号化する,ノードがエンティティと変数に対応する,より一般的なアーキテクチャを提案する。
提案手法の汎用性により,従来よりも多種多様なクエリー型を符号化することができる。
これらのモデルとは対照的に,リンク予測のみのためにトレーニングされた場合,複雑なクエリに応答することができる。
モデルは、明示的な監督なしにエンティティタイプの概念を捉えたエンティティ埋め込みを学習することを示します。
関連論文リスト
- Effective Instruction Parsing Plugin for Complex Logical Query Answering on Knowledge Graphs [51.33342412699939]
知識グラフクエリ埋め込み(KGQE)は、不完全なKGに対する複雑な推論のために、低次元KG空間に一階論理(FOL)クエリを埋め込むことを目的としている。
近年の研究では、FOLクエリの論理的セマンティクスをよりよく捉えるために、さまざまな外部情報(エンティティタイプや関係コンテキストなど)を統合している。
コードのようなクエリ命令から遅延クエリパターンをキャプチャする効果的なクエリ命令解析(QIPP)を提案する。
論文 参考訳(メタデータ) (2024-10-27T03:18:52Z) - One Model, Any Conjunctive Query: Graph Neural Networks for Answering Complex Queries over Knowledge Graphs [7.34044245579928]
我々は,知識グラフ上の任意の共役クエリに対する回答を分類可能なグラフニューラルネットワークモデルであるAnyCQを提案する。
我々は、AnyCQが任意の構造を持つ大規模クエリに一般化できることを示し、既存のアプローチが失敗するサンプルに対する回答を確実に分類し、検索する。
論文 参考訳(メタデータ) (2024-09-21T00:30:44Z) - Meta Operator for Complex Query Answering on Knowledge Graphs [58.340159346749964]
我々は、異なる複雑なクエリタイプではなく、異なる論理演算子型が一般化性を向上させる鍵であると主張する。
本稿では,メタ演算子を限られたデータで学習し,様々な複雑なクエリの演算子のインスタンスに適応するメタ学習アルゴリズムを提案する。
実験結果から,メタオペレータの学習は,従来のCQAモデルやメタCQAモデルよりも効果的であることが示唆された。
論文 参考訳(メタデータ) (2024-03-15T08:54:25Z) - A Neuro-Symbolic Framework for Answering Graph Pattern Queries in Knowledge Graphs [17.93455358818447]
ほとんどのニューロシンボリッククエリプロセッサは木のようなグラフパターンクエリに制約されている。
不完全な知識グラフ上で任意のグラフパターンクエリに応答するフレームワークを導入する。
論文 参考訳(メタデータ) (2023-10-06T21:31:17Z) - Modeling Relational Patterns for Logical Query Answering over Knowledge Graphs [29.47155614953955]
そこで我々は,複雑な空間における回転により,クエリ領域を幾何学的円錐と代数的クエリ演算子として定義する新しいクエリ埋め込み手法RoConEを開発した。
いくつかのベンチマークデータセットに対する実験結果から,論理的問合せ処理の強化のための関係パターンの利点が確認された。
論文 参考訳(メタデータ) (2023-03-21T13:59:15Z) - Logical Message Passing Networks with One-hop Inference on Atomic
Formulas [57.47174363091452]
本稿では,ニューラルネットワーク演算子から知識グラフの埋め込みを分解する,複雑な問合せ応答のためのフレームワークを提案する。
クエリグラフの上に、局所的な原子式上のワンホップ推論とグローバル論理的推論を結びつける論理メッセージパッシングニューラルネットワーク(LMPNN)を提案する。
我々のアプローチは、最先端のニューラルCQAモデルをもたらす。
論文 参考訳(メタデータ) (2023-01-21T02:34:06Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
KGQA(Multi-hop Question Answering over Knowledge Graph)は、自然言語の質問で言及されているトピックエンティティから、複数のホップを持つ回答エンティティを見つけることを目的としている。
我々は、モデルアーキテクチャとパラメータ学習の両方において、検索と推論を統合することで、マルチホップKGQAタスクの新しいアプローチであるUniKGQAを提案する。
論文 参考訳(メタデータ) (2022-12-02T04:08:09Z) - Knowledge Base Question Answering by Case-based Reasoning over Subgraphs [81.22050011503933]
本モデルでは,既存のKG補完アルゴリズムよりも複雑な推論パターンを必要とする問合せに対して,より効果的に答えることを示す。
提案モデルは、KBQAベンチマークの最先端モデルよりも優れているか、競合的に動作する。
論文 参考訳(メタデータ) (2022-02-22T01:34:35Z) - Query Embedding on Hyper-relational Knowledge Graphs [0.4779196219827507]
マルチホップ論理推論は知識グラフ上の表現学習の分野で確立された問題である。
我々はマルチホップ推論問題をハイパーリレーショナルなKGに拡張し、この新しいタイプの複雑なクエリに対処する。
論文 参考訳(メタデータ) (2021-06-15T14:08:50Z) - Tree-Augmented Cross-Modal Encoding for Complex-Query Video Retrieval [98.62404433761432]
インターネット上のユーザ生成ビデオの急速な増加により、テキストベースのビデオ検索システムの必要性が高まっている。
従来の手法は主に単純なクエリによる検索における概念に基づくパラダイムを好んでいる。
木を増設したクロスモーダルを提案する。
クエリの言語構造とビデオの時間表現を共同で学習する手法。
論文 参考訳(メタデータ) (2020-07-06T02:50:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。