Classical Tools for Antipodal Identification in Reissner-Nordstr\"om
Spacetime
- URL: http://arxiv.org/abs/2002.02501v3
- Date: Sun, 20 Sep 2020 19:58:33 GMT
- Title: Classical Tools for Antipodal Identification in Reissner-Nordstr\"om
Spacetime
- Authors: Nathaniel A. Strauss, Bernard F. Whiting, and Anne T. Franzen
- Abstract summary: We extend the discussion of the antipodal identification of black holes to the Reissner-Nordstr"om spacetime.
We provide a procedure for constructing a solution for an arbitrary analytic extension of RN.
We find that, for low enough frequency, field amplitudes of solutions with purely positive or negative frequency at each horizon will acquire only a phase after passing both the inner and outer horizons.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We extend the discussion of the antipodal identification of black holes to
the Reissner-Nordstr\"om (RN) spacetime by developing the classical tools
necessary to define the corresponding quantum field theory (QFT). We solve the
massless Klein-Gordon equation in the RN background in terms of scattering
coefficients and provide a procedure for constructing a solution for an
arbitrary analytic extension of RN. The behavior of the maximally extended
solution is highly dependent upon the coefficients of scattering between the
inner and outer horizons, so we present the low-frequency behavior of, and
numerical solutions for, these quantities. We find that, for low enough
frequency, field amplitudes of solutions with purely positive or negative
frequency at each horizon will acquire only a phase after passing both the
inner and outer horizons, while at higher frequencies the amplitudes will tend
to grow exponentially either to the future or to the past, and decay
exponentially in the other direction. Regardless, we can always construct a
basis of globally antipodal symmetric and antisymmetric solutions for any
finite analytic extension of RN. We have characterized this basis in terms of
positive and negative frequency solutions for future use in constructing the
corresponding QFT.
Related papers
- Inclusive reactions from finite Minkowski spacetime correlation functions [44.99833362998488]
We use real-time methods to determine scattering amplitudes of few-hadron systems for arbitrary kinematics.
In units of the lightest mass of the theory, we find that to constrain amplitudes using real-time methods within $mathcalO(10%)$, the spacetime volumes must satisfy $mL sim mathcalO(10-102)$ and $ mTsim mathcalO(102-104)$.
arXiv Detail & Related papers (2024-06-11T01:39:24Z) - Convergence of mean-field Langevin dynamics: Time and space
discretization, stochastic gradient, and variance reduction [49.66486092259376]
The mean-field Langevin dynamics (MFLD) is a nonlinear generalization of the Langevin dynamics that incorporates a distribution-dependent drift.
Recent works have shown that MFLD globally minimizes an entropy-regularized convex functional in the space of measures.
We provide a framework to prove a uniform-in-time propagation of chaos for MFLD that takes into account the errors due to finite-particle approximation, time-discretization, and gradient approximation.
arXiv Detail & Related papers (2023-06-12T16:28:11Z) - Role of boundary conditions in the full counting statistics of
topological defects after crossing a continuous phase transition [62.997667081978825]
We analyze the role of boundary conditions in the statistics of topological defects.
We show that for fast and moderate quenches, the cumulants of the kink number distribution present a universal scaling with the quench rate.
arXiv Detail & Related papers (2022-07-08T09:55:05Z) - Nonequilibrium steady states in the Floquet-Lindblad systems: van
Vleck's high-frequency expansion approach [4.726777092009554]
Nonequilibrium steady states (NESSs) in periodically driven dissipative quantum systems are vital in Floquet engineering.
We develop a general theory for high-frequency drives with Lindblad-type dissipation to characterize and analyze NESSs.
arXiv Detail & Related papers (2021-07-16T14:05:20Z) - Quantum-critical properties of the long-range transverse-field Ising
model from quantum Monte Carlo simulations [0.0]
The quantum-critical properties of the transverse-field Ising model are investigated by means of quantum Monte Carlo.
For ferromagnetic Ising interactions, we resolve the limiting regimes known from field theory, ranging from the nearest-neighbor Ising to the long-range universality classes.
arXiv Detail & Related papers (2021-03-17T07:00:29Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - A Dynamical Central Limit Theorem for Shallow Neural Networks [48.66103132697071]
We prove that the fluctuations around the mean limit remain bounded in mean square throughout training.
If the mean-field dynamics converges to a measure that interpolates the training data, we prove that the deviation eventually vanishes in the CLT scaling.
arXiv Detail & Related papers (2020-08-21T18:00:50Z) - Dynamical Mean-Field Theory for Markovian Open Quantum Many-Body Systems [0.0]
We extend the nonequilibrium bosonic Dynamical Mean Field Theory to Markovian open quantum systems.
As a first application, we address the steady-state of a driven-dissipative Bose-Hubbard model with two-body losses and incoherent pump.
arXiv Detail & Related papers (2020-08-06T10:35:26Z) - The role of boundary conditions in quantum computations of scattering
observables [58.720142291102135]
Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution.
As with present-day calculations, quantum computation strategies still require the restriction to a finite system size.
We quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty.
arXiv Detail & Related papers (2020-07-01T17:43:11Z) - Operator-algebraic renormalization and wavelets [62.997667081978825]
We construct the continuum free field as the scaling limit of Hamiltonian lattice systems using wavelet theory.
A renormalization group step is determined by the scaling equation identifying lattice observables with the continuum field smeared by compactly supported wavelets.
arXiv Detail & Related papers (2020-02-04T18:04:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.