Self-restricting Noise and Exponential Relative Entropy Decay Under Unital Quantum Markov Semigroups
- URL: http://arxiv.org/abs/2203.03745v4
- Date: Thu, 01 May 2025 17:09:48 GMT
- Title: Self-restricting Noise and Exponential Relative Entropy Decay Under Unital Quantum Markov Semigroups
- Authors: Nicholas LaRacuente,
- Abstract summary: We analyze continuous processes that combine dissipative with Hamiltonian time-evolution.<n>We show that when dissipation is much stronger than Hamiltonian time-evolution, exponential decay toward the semigroup's decoherence-free subspace is bounded inversely in the decay rate of the dissipative part alone.
- Score: 0.8702432681310401
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: States of open quantum systems often decay continuously under environmental interactions. Quantum Markov semigroups model such processes in dissipative environments. It is known that finite-dimensional quantum Markov semigroups with GNS detailed balance universally obey complete modified logarithmic Sobolev inequalities (CMLSIs), yielding exponential decay of relative entropy to a subspace of fixed point states. We analyze continuous processes that combine dissipative with Hamiltonian time-evolution, precluding this notion of detailed balance. First, we find counterexamples to CMLSI-like decay for these processes and determine conditions under which it fails. In contrast, we prove that despite its absence at early times, exponential decay re-appears for unital, finite-dimensional quantum Markov semigroups at finite timescales. Finally, we show that when dissipation is much stronger than Hamiltonian time-evolution, the rate of eventual, exponential decay toward the semigroup's decoherence-free subspace is bounded inversely in the decay rate of the dissipative part alone. Dubbed self-restricting noise, this inverse relationship arises when strong damping suppresses effects that would otherwise spread noise beyond its initial subspace.
Related papers
- Symmetries, Conservation Laws and Entanglement in Non-Hermitian Fermionic Lattices [37.69303106863453]
Non-Hermitian quantum many-body systems feature steady-state entanglement transitions driven by unitary dynamics and dissipation.
We show that the steady state is obtained by filling single-particle right eigenstates with the largest imaginary part of the eigenvalue.
We illustrate these principles in the Hatano-Nelson model with periodic boundary conditions and the non-Hermitian Su-Schrieffer-Heeger model.
arXiv Detail & Related papers (2025-04-11T14:06:05Z) - Measurement-induced transitions for interacting fermions [43.04146484262759]
We develop a field-theoretical framework that provides a unified approach to observables characterizing entanglement and charge fluctuations.
Within this framework, we derive a replicated Keldysh non-linear sigma model (NLSM)
By using the renormalization-group approach for the NLSM, we determine the phase diagram and the scaling of physical observables.
arXiv Detail & Related papers (2024-10-09T18:00:08Z) - Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - Quantum correlations in the steady state of light-emitter ensembles from
perturbation theory [0.0]
In systems of light emitters subject to single-emitter or two-emitter driving, the steady state perturbed away from the U(1) limit exhibits spin squeezing.
Our main result is that in systems of light emitters subject to single-emitter or two-emitter driving, the steady state perturbed away from the U(1) limit generically exhibits spin squeezing.
arXiv Detail & Related papers (2024-02-26T18:50:30Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Decay and revival dynamics of a quantum state embedded in regularly
spaced band of states [0.0]
The dynamics of a single quantum state embedded in one or several (quasi-)continua is one of the most studied phenomena in quantum mechanics.
In this work we investigate its discrete analogue and consider short and long time dynamics based on numerical and analytical solutions of the Schr"odinger equation.
arXiv Detail & Related papers (2023-06-05T08:30:47Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Meson content of entanglement spectra after integrable and nonintegrable
quantum quenches [0.0]
We calculate the time evolution of the lower part of the entanglement spectrum and return rate functions after global quantum quenches in the Ising model.
Our analyses provide a deeper understanding on the role of quantum information quantities for the dynamics of emergent phenomena reminiscent to systems in high-energy physics.
arXiv Detail & Related papers (2022-10-27T18:00:01Z) - Relative entropy decay and complete positivity mixing time [11.225649178057697]
We prove that the complete modified logarithmic Sobolev constant of a quantum Markov semigroup is bounded by the inverse of its complete positivity mixing time.
Our results apply to GNS-symmetric semigroups on general von Neumanns.
arXiv Detail & Related papers (2022-09-22T17:40:22Z) - Indication of critical scaling in time during the relaxation of an open
quantum system [34.82692226532414]
Phase transitions correspond to the singular behavior of physical systems in response to continuous control parameters like temperature or external fields.
Near continuous phase transitions, associated with the divergence of a correlation length, universal power-law scaling behavior with critical exponents independent of microscopic system details is found.
arXiv Detail & Related papers (2022-08-10T05:59:14Z) - Role of boundary conditions in the full counting statistics of
topological defects after crossing a continuous phase transition [62.997667081978825]
We analyze the role of boundary conditions in the statistics of topological defects.
We show that for fast and moderate quenches, the cumulants of the kink number distribution present a universal scaling with the quench rate.
arXiv Detail & Related papers (2022-07-08T09:55:05Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - The modified logarithmic Sobolev inequality for quantum spin systems:
classical and commuting nearest neighbour interactions [2.148535041822524]
We prove a strong exponential convergence in relative entropy of the system to equilibrium under a condition of spatial mixing.
We show that our notion of spatial mixing is a consequence of the recent quantum generalization of Dobrushin and Shlosman's complete analyticity of the free-energy at equilibrium.
Our results have wide-ranging applications in quantum information.
arXiv Detail & Related papers (2020-09-24T16:54:06Z) - The role of boundary conditions in quantum computations of scattering
observables [58.720142291102135]
Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution.
As with present-day calculations, quantum computation strategies still require the restriction to a finite system size.
We quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty.
arXiv Detail & Related papers (2020-07-01T17:43:11Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z) - Non-exponential decay in Floquet-Bloch bands [0.0]
Exponential decay laws describe systems ranging from unstable nuclei to fluorescent molecules.
We propose the use of Bose condensates in Floquet-Bloch bands as a probe of long-time non-exponential decay in single isolated emitters.
arXiv Detail & Related papers (2020-02-08T00:12:22Z) - Growth of mutual information in a quenched one-dimensional open quantum
many body system [11.731315568079445]
In a dissipative system, postquench information propagates solely through entangled pairs of quasiparticles having a finite lifetime.
Remarkably, in spite of the finite lifetime of the quasiparticles, a finite steady-state value of the MI survives in times which is an artifact of nonvanishing two-point correlations.
arXiv Detail & Related papers (2020-01-27T14:08:39Z) - Many-Body Dephasing in a Trapped-Ion Quantum Simulator [0.0]
How a closed interacting quantum many-body system relaxes and dephases as a function of time is a fundamental question in thermodynamic and statistical physics.
We analyse and observe the persistent temporal fluctuations after a quantum quench of a tunable long-range interacting transverse-field Ising Hamiltonian realized with a trapped-ion quantum simulator.
arXiv Detail & Related papers (2020-01-08T12:33:28Z) - Adiabatic quantum decoherence in many non-interacting subsystems induced
by the coupling with a common boson bath [0.0]
This work addresses quantum adiabatic decoherence of many-body spin systems coupled with a boson field in the framework of open quantum systems theory.
We generalize the traditional spin-boson model by considering a system-environment interaction Hamiltonian that represents a partition of non-interacting subsystems.
arXiv Detail & Related papers (2019-12-30T16:39:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.