SideInfNet: A Deep Neural Network for Semi-Automatic Semantic
Segmentation with Side Information
- URL: http://arxiv.org/abs/2002.02634v4
- Date: Fri, 17 Jul 2020 12:59:56 GMT
- Title: SideInfNet: A Deep Neural Network for Semi-Automatic Semantic
Segmentation with Side Information
- Authors: Jing Yu Koh, Duc Thanh Nguyen, Quang-Trung Truong, Sai-Kit Yeung,
Alexander Binder
- Abstract summary: This paper proposes a novel deep neural network architecture, namely SideInfNet.
It integrates features learnt from images with side information extracted from user annotations.
To evaluate our method, we applied the proposed network to three semantic segmentation tasks and conducted extensive experiments on benchmark datasets.
- Score: 83.03179580646324
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fully-automatic execution is the ultimate goal for many Computer Vision
applications. However, this objective is not always realistic in tasks
associated with high failure costs, such as medical applications. For these
tasks, semi-automatic methods allowing minimal effort from users to guide
computer algorithms are often preferred due to desirable accuracy and
performance. Inspired by the practicality and applicability of the
semi-automatic approach, this paper proposes a novel deep neural network
architecture, namely SideInfNet that effectively integrates features learnt
from images with side information extracted from user annotations. To evaluate
our method, we applied the proposed network to three semantic segmentation
tasks and conducted extensive experiments on benchmark datasets. Experimental
results and comparison with prior work have verified the superiority of our
model, suggesting the generality and effectiveness of the model in
semi-automatic semantic segmentation.
Related papers
- Transfer Learning with Reconstruction Loss [12.906500431427716]
This paper proposes a novel approach for model training by adding into the model an additional reconstruction stage associated with a new reconstruction loss.
The proposed approach encourages the learned features to be general and transferable, and therefore can be readily used for efficient transfer learning.
For numerical simulations, three applications are studied: transfer learning on classifying MNIST handwritten digits, the device-to-device wireless network power allocation, and the multiple-input-single-output network downlink beamforming and localization.
arXiv Detail & Related papers (2024-03-31T00:22:36Z) - S$^3$M-Net: Joint Learning of Semantic Segmentation and Stereo Matching
for Autonomous Driving [40.305452898732774]
S$3$M-Net is a novel joint learning framework developed to perform semantic segmentation and stereo matching simultaneously.
S$3$M-Net shares the features extracted from RGB images between both tasks, resulting in an improved overall scene understanding capability.
arXiv Detail & Related papers (2024-01-21T06:47:33Z) - A Threefold Review on Deep Semantic Segmentation: Efficiency-oriented,
Temporal and Depth-aware design [77.34726150561087]
We conduct a survey on the most relevant and recent advances in Deep Semantic in the context of vision for autonomous vehicles.
Our main objective is to provide a comprehensive discussion on the main methods, advantages, limitations, results and challenges faced from each perspective.
arXiv Detail & Related papers (2023-03-08T01:29:55Z) - ALSO: Automotive Lidar Self-supervision by Occupancy estimation [70.70557577874155]
We propose a new self-supervised method for pre-training the backbone of deep perception models operating on point clouds.
The core idea is to train the model on a pretext task which is the reconstruction of the surface on which the 3D points are sampled.
The intuition is that if the network is able to reconstruct the scene surface, given only sparse input points, then it probably also captures some fragments of semantic information.
arXiv Detail & Related papers (2022-12-12T13:10:19Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - X-Distill: Improving Self-Supervised Monocular Depth via Cross-Task
Distillation [69.9604394044652]
We propose a novel method to improve the self-supervised training of monocular depth via cross-task knowledge distillation.
During training, we utilize a pretrained semantic segmentation teacher network and transfer its semantic knowledge to the depth network.
We extensively evaluate the efficacy of our proposed approach on the KITTI benchmark and compare it with the latest state of the art.
arXiv Detail & Related papers (2021-10-24T19:47:14Z) - MaAST: Map Attention with Semantic Transformersfor Efficient Visual
Navigation [4.127128889779478]
This work focuses on performing better or comparable to the existing learning-based solutions for visual navigation for autonomous agents.
We propose a method to encode vital scene semantics into a semantically informed, top-down egocentric map representation.
We conduct experiments on 3-D reconstructed indoor PointGoal visual navigation and demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2021-03-21T12:01:23Z) - Fully Dynamic Inference with Deep Neural Networks [19.833242253397206]
Two compact networks, called Layer-Net (L-Net) and Channel-Net (C-Net), predict on a per-instance basis which layers or filters/channels are redundant and therefore should be skipped.
On the CIFAR-10 dataset, LC-Net results in up to 11.9$times$ fewer floating-point operations (FLOPs) and up to 3.3% higher accuracy compared to other dynamic inference methods.
On the ImageNet dataset, LC-Net achieves up to 1.4$times$ fewer FLOPs and up to 4.6% higher Top-1 accuracy than the other methods.
arXiv Detail & Related papers (2020-07-29T23:17:48Z) - Depthwise Non-local Module for Fast Salient Object Detection Using a
Single Thread [136.2224792151324]
We propose a new deep learning algorithm for fast salient object detection.
The proposed algorithm achieves competitive accuracy and high inference efficiency simultaneously with a single CPU thread.
arXiv Detail & Related papers (2020-01-22T15:23:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.