Transfer Learning with Reconstruction Loss
- URL: http://arxiv.org/abs/2404.00505v2
- Date: Fri, 12 Apr 2024 00:16:43 GMT
- Title: Transfer Learning with Reconstruction Loss
- Authors: Wei Cui, Wei Yu,
- Abstract summary: This paper proposes a novel approach for model training by adding into the model an additional reconstruction stage associated with a new reconstruction loss.
The proposed approach encourages the learned features to be general and transferable, and therefore can be readily used for efficient transfer learning.
For numerical simulations, three applications are studied: transfer learning on classifying MNIST handwritten digits, the device-to-device wireless network power allocation, and the multiple-input-single-output network downlink beamforming and localization.
- Score: 12.906500431427716
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In most applications of utilizing neural networks for mathematical optimization, a dedicated model is trained for each specific optimization objective. However, in many scenarios, several distinct yet correlated objectives or tasks often need to be optimized on the same set of problem inputs. Instead of independently training a different neural network for each problem separately, it would be more efficient to exploit the correlations between these objectives and to train multiple neural network models with shared model parameters and feature representations. To achieve this, this paper first establishes the concept of common information: the shared knowledge required for solving the correlated tasks, then proposes a novel approach for model training by adding into the model an additional reconstruction stage associated with a new reconstruction loss. This loss is for reconstructing the common information starting from a selected hidden layer in the model. The proposed approach encourages the learned features to be general and transferable, and therefore can be readily used for efficient transfer learning. For numerical simulations, three applications are studied: transfer learning on classifying MNIST handwritten digits, the device-to-device wireless network power allocation, and the multiple-input-single-output network downlink beamforming and localization. Simulation results suggest that the proposed approach is highly efficient in data and model complexity, is resilient to over-fitting, and has competitive performances.
Related papers
- Transferable Post-training via Inverse Value Learning [83.75002867411263]
We propose modeling changes at the logits level during post-training using a separate neural network (i.e., the value network)
After training this network on a small base model using demonstrations, this network can be seamlessly integrated with other pre-trained models during inference.
We demonstrate that the resulting value network has broad transferability across pre-trained models of different parameter sizes.
arXiv Detail & Related papers (2024-10-28T13:48:43Z) - Iterative self-transfer learning: A general methodology for response
time-history prediction based on small dataset [0.0]
An iterative self-transfer learningmethod for training neural networks based on small datasets is proposed in this study.
The results show that the proposed method can improve the model performance by near an order of magnitude on small datasets.
arXiv Detail & Related papers (2023-06-14T18:48:04Z) - Transfer Learning via Test-Time Neural Networks Aggregation [11.42582922543676]
It has been demonstrated that deep neural networks outperform traditional machine learning.
Deep networks lack generalisability, that is, they will not perform as good as in a new (testing) set drawn from a different distribution.
arXiv Detail & Related papers (2022-06-27T15:46:05Z) - DST: Dynamic Substitute Training for Data-free Black-box Attack [79.61601742693713]
We propose a novel dynamic substitute training attack method to encourage substitute model to learn better and faster from the target model.
We introduce a task-driven graph-based structure information learning constrain to improve the quality of generated training data.
arXiv Detail & Related papers (2022-04-03T02:29:11Z) - Canoe : A System for Collaborative Learning for Neural Nets [4.547883122787855]
Canoe is a framework that facilitates knowledge transfer for neural networks.
Canoe provides new system support for dynamically extracting significant parameters from a helper node's neural network.
The evaluation of Canoe with different PyTorch and neural network models demonstrates that the knowledge transfer mechanism improves the model's adaptiveness to 3.5X compared to learning in isolation.
arXiv Detail & Related papers (2021-08-27T05:30:15Z) - All at Once Network Quantization via Collaborative Knowledge Transfer [56.95849086170461]
We develop a novel collaborative knowledge transfer approach for efficiently training the all-at-once quantization network.
Specifically, we propose an adaptive selection strategy to choose a high-precision enquoteteacher for transferring knowledge to the low-precision student.
To effectively transfer knowledge, we develop a dynamic block swapping method by randomly replacing the blocks in the lower-precision student network with the corresponding blocks in the higher-precision teacher network.
arXiv Detail & Related papers (2021-03-02T03:09:03Z) - Graph-Based Neural Network Models with Multiple Self-Supervised
Auxiliary Tasks [79.28094304325116]
Graph Convolutional Networks are among the most promising approaches for capturing relationships among structured data points.
We propose three novel self-supervised auxiliary tasks to train graph-based neural network models in a multi-task fashion.
arXiv Detail & Related papers (2020-11-14T11:09:51Z) - Pre-Trained Models for Heterogeneous Information Networks [57.78194356302626]
We propose a self-supervised pre-training and fine-tuning framework, PF-HIN, to capture the features of a heterogeneous information network.
PF-HIN consistently and significantly outperforms state-of-the-art alternatives on each of these tasks, on four datasets.
arXiv Detail & Related papers (2020-07-07T03:36:28Z) - Minimax Lower Bounds for Transfer Learning with Linear and One-hidden
Layer Neural Networks [27.44348371795822]
We develop a statistical minimax framework to characterize the limits of transfer learning.
We derive a lower-bound for the target generalization error achievable by any algorithm as a function of the number of labeled source and target data.
arXiv Detail & Related papers (2020-06-16T22:49:26Z) - Real-time Federated Evolutionary Neural Architecture Search [14.099753950531456]
Federated learning is a distributed machine learning approach to privacy preservation.
We propose an evolutionary approach to real-time federated neural architecture search that not only optimize the model performance but also reduces the local payload.
This way, we effectively reduce computational and communication costs required for evolutionary optimization and avoid big performance fluctuations of the local models.
arXiv Detail & Related papers (2020-03-04T17:03:28Z) - Model Fusion via Optimal Transport [64.13185244219353]
We present a layer-wise model fusion algorithm for neural networks.
We show that this can successfully yield "one-shot" knowledge transfer between neural networks trained on heterogeneous non-i.i.d. data.
arXiv Detail & Related papers (2019-10-12T22:07:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.