Statistical Outlier Identification in Multi-robot Visual SLAM using
Expectation Maximization
- URL: http://arxiv.org/abs/2002.02638v1
- Date: Fri, 7 Feb 2020 06:34:44 GMT
- Title: Statistical Outlier Identification in Multi-robot Visual SLAM using
Expectation Maximization
- Authors: Arman Karimian, Ziqi Yang, Roberto Tron
- Abstract summary: This paper introduces a novel and distributed method for detecting inter-map loop closure outliers in simultaneous localization and mapping (SLAM)
The proposed algorithm does not rely on a good initialization and can handle more than two maps at a time.
- Score: 18.259478519717426
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces a novel and distributed method for detecting inter-map
loop closure outliers in simultaneous localization and mapping (SLAM). The
proposed algorithm does not rely on a good initialization and can handle more
than two maps at a time. In multi-robot SLAM applications, maps made by
different agents have nonidentical spatial frames of reference which makes
initialization very difficult in the presence of outliers. This paper presents
a probabilistic approach for detecting incorrect orientation measurements prior
to pose graph optimization by checking the geometric consistency of rotation
measurements. Expectation-Maximization is used to fine-tune the model
parameters. As ancillary contributions, a new approximate discrete inference
procedure is presented which uses evidence on loops in a graph and is based on
optimization (Alternate Direction Method of Multipliers). This method yields
superior results compared to Belief Propagation and has convergence guarantees.
Simulation and experimental results are presented that evaluate the performance
of the outlier detection method and the inference algorithm on synthetic and
real-world data.
Related papers
- Iterative Methods for Full-Scale Gaussian Process Approximations for Large Spatial Data [9.913418444556486]
We show how iterative methods can be used to reduce the computational costs for calculating likelihoods, gradients, and predictive distributions with FSAs.
We also present a novel, accurate, and fast way to calculate predictive variances relying on estimations and iterative methods.
All methods are implemented in a free C++ software library with high-level Python and R packages.
arXiv Detail & Related papers (2024-05-23T12:25:22Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
Noise-contrastive estimation(NCE) has been proposed by formulating the objective as the logistic loss of the real data and the artificial noise.
In this paper, we study it a direct approach for optimizing the negative log-likelihood of unnormalized models.
arXiv Detail & Related papers (2023-06-13T01:18:16Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
This work offers an efficient solution to temporal point processes inference using general parametric kernels with finite support.
The method's effectiveness is evaluated by modeling the occurrence of stimuli-induced patterns from brain signals recorded with magnetoencephalography (MEG)
Results show that the proposed approach leads to an improved estimation of pattern latency than the state-of-the-art.
arXiv Detail & Related papers (2022-10-10T12:35:02Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
We propose a computationally efficient and powerful Bayesian approach for sparse high-dimensional linear regression.
Minimal prior assumptions on the parameters are used through the use of plug-in empirical Bayes estimates.
The proposed approach is implemented in the R package probe.
arXiv Detail & Related papers (2022-09-16T19:15:50Z) - Fast and Robust Online Inference with Stochastic Gradient Descent via
Random Scaling [0.9806910643086042]
We develop a new method of online inference for a vector of parameters estimated by the Polyak-Rtupper averaging procedure of gradient descent algorithms.
Our approach is fully operational with online data and is rigorously underpinned by a functional central limit theorem.
arXiv Detail & Related papers (2021-06-06T15:38:37Z) - Estimating leverage scores via rank revealing methods and randomization [50.591267188664666]
We study algorithms for estimating the statistical leverage scores of rectangular dense or sparse matrices of arbitrary rank.
Our approach is based on combining rank revealing methods with compositions of dense and sparse randomized dimensionality reduction transforms.
arXiv Detail & Related papers (2021-05-23T19:21:55Z) - Sparse Algorithms for Markovian Gaussian Processes [18.999495374836584]
Sparse Markovian processes combine the use of inducing variables with efficient Kalman filter-likes recursion.
We derive a general site-based approach to approximate the non-Gaussian likelihood with local Gaussian terms, called sites.
Our approach results in a suite of novel sparse extensions to algorithms from both the machine learning and signal processing, including variational inference, expectation propagation, and the classical nonlinear Kalman smoothers.
The derived methods are suited to literature-temporal data, where the model has separate inducing points in both time and space.
arXiv Detail & Related papers (2021-03-19T09:50:53Z) - Random Matrix Based Extended Target Tracking with Orientation: A New
Model and Inference [0.0]
We propose a novel extended target tracking algorithm which is capable of representing the extent of dynamic objects as an ellipsoid with a time-varying orientation angle.
A diagonal positive semi-definite matrix is defined to model objects' extent within the random matrix framework.
It is not possible to find a closed-form analytical expression for the true posterior because of the absence of conjugacy.
arXiv Detail & Related papers (2020-10-17T16:33:06Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
We propose a novel approach for scaling GP regression with derivatives based on quadrature Fourier features.
We prove deterministic, non-asymptotic and exponentially fast decaying error bounds which apply for both the approximated kernel as well as the approximated posterior.
arXiv Detail & Related papers (2020-03-05T14:33:20Z) - Bayesian System ID: Optimal management of parameter, model, and
measurement uncertainty [0.0]
We evaluate the robustness of a probabilistic formulation of system identification (ID) to sparse, noisy, and indirect data.
We show that the log posterior has improved geometric properties compared with the objective function surfaces of traditional methods.
arXiv Detail & Related papers (2020-03-04T22:48:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.