Random Matrix Based Extended Target Tracking with Orientation: A New
Model and Inference
- URL: http://arxiv.org/abs/2010.08820v2
- Date: Mon, 8 Mar 2021 09:36:36 GMT
- Title: Random Matrix Based Extended Target Tracking with Orientation: A New
Model and Inference
- Authors: Bark{\i}n Tuncer, Emre \"Ozkan
- Abstract summary: We propose a novel extended target tracking algorithm which is capable of representing the extent of dynamic objects as an ellipsoid with a time-varying orientation angle.
A diagonal positive semi-definite matrix is defined to model objects' extent within the random matrix framework.
It is not possible to find a closed-form analytical expression for the true posterior because of the absence of conjugacy.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this study, we propose a novel extended target tracking algorithm which is
capable of representing the extent of dynamic objects as an ellipsoid with a
time-varying orientation angle. A diagonal positive semi-definite matrix is
defined to model objects' extent within the random matrix framework where the
diagonal elements have inverse-Gamma priors. The resulting measurement equation
is non-linear in the state variables, and it is not possible to find a
closed-form analytical expression for the true posterior because of the absence
of conjugacy. We use the variational Bayes technique to perform approximate
inference, where the Kullback-Leibler divergence between the true and the
approximate posterior is minimized by performing fixed-point iterations. The
update equations are easy to implement, and the algorithm can be used in
real-time tracking applications. We illustrate the performance of the method in
simulations and experiments with real data. The proposed method outperforms the
state-of-the-art methods when compared with respect to accuracy and robustness.
Related papers
- Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood
Estimation for Latent Gaussian Models [69.22568644711113]
We introduce probabilistic unrolling, a method that combines Monte Carlo sampling with iterative linear solvers to circumvent matrix inversions.
Our theoretical analyses reveal that unrolling and backpropagation through the iterations of the solver can accelerate gradient estimation for maximum likelihood estimation.
In experiments on simulated and real data, we demonstrate that probabilistic unrolling learns latent Gaussian models up to an order of magnitude faster than gradient EM, with minimal losses in model performance.
arXiv Detail & Related papers (2023-06-05T21:08:34Z) - Low-rank extended Kalman filtering for online learning of neural
networks from streaming data [71.97861600347959]
We propose an efficient online approximate Bayesian inference algorithm for estimating the parameters of a nonlinear function from a potentially non-stationary data stream.
The method is based on the extended Kalman filter (EKF), but uses a novel low-rank plus diagonal decomposition of the posterior matrix.
In contrast to methods based on variational inference, our method is fully deterministic, and does not require step-size tuning.
arXiv Detail & Related papers (2023-05-31T03:48:49Z) - Classification of BCI-EEG based on augmented covariance matrix [0.0]
We propose a new framework based on the augmented covariance extracted from an autoregressive model to improve motor imagery classification.
We will test our approach on several datasets and several subjects using the MOABB framework.
arXiv Detail & Related papers (2023-02-09T09:04:25Z) - Non-Iterative Recovery from Nonlinear Observations using Generative
Models [14.772379476524407]
We assume that the signal lies in the range of an $L$-Lipschitz continuous generative model with bounded $k$-dimensional inputs.
Our reconstruction method is non-iterative (though approximating the projection step may use an iterative procedure) and highly efficient.
arXiv Detail & Related papers (2022-05-31T12:34:40Z) - Bayesian inference of ODEs with Gaussian processes [17.138448665454373]
We propose a novel Bayesian nonparametric model that uses Gaussian processes to infer posteriors of unknown ODE systems directly from data.
We derive sparse variational inference with decoupled functional sampling to represent vector field posteriors.
The method demonstrates the benefit of computing vector field posteriors, with predictive uncertainty scores outperforming alternative methods on multiple ODE learning tasks.
arXiv Detail & Related papers (2021-06-21T08:09:17Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
We design regularization-free algorithms for the high-dimensional single index model.
We provide theoretical guarantees for the induced implicit regularization phenomenon.
arXiv Detail & Related papers (2020-07-16T13:27:47Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
We propose a novel approach for scaling GP regression with derivatives based on quadrature Fourier features.
We prove deterministic, non-asymptotic and exponentially fast decaying error bounds which apply for both the approximated kernel as well as the approximated posterior.
arXiv Detail & Related papers (2020-03-05T14:33:20Z) - Robust 6D Object Pose Estimation by Learning RGB-D Features [59.580366107770764]
We propose a novel discrete-continuous formulation for rotation regression to resolve this local-optimum problem.
We uniformly sample rotation anchors in SO(3), and predict a constrained deviation from each anchor to the target, as well as uncertainty scores for selecting the best prediction.
Experiments on two benchmarks: LINEMOD and YCB-Video, show that the proposed method outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2020-02-29T06:24:55Z) - Statistical Outlier Identification in Multi-robot Visual SLAM using
Expectation Maximization [18.259478519717426]
This paper introduces a novel and distributed method for detecting inter-map loop closure outliers in simultaneous localization and mapping (SLAM)
The proposed algorithm does not rely on a good initialization and can handle more than two maps at a time.
arXiv Detail & Related papers (2020-02-07T06:34:44Z) - Optimal Iterative Sketching with the Subsampled Randomized Hadamard
Transform [64.90148466525754]
We study the performance of iterative sketching for least-squares problems.
We show that the convergence rate for Haar and randomized Hadamard matrices are identical, andally improve upon random projections.
These techniques may be applied to other algorithms that employ randomized dimension reduction.
arXiv Detail & Related papers (2020-02-03T16:17:50Z) - Analysis of Bayesian Inference Algorithms by the Dynamical Functional
Approach [2.8021833233819486]
We analyze an algorithm for approximate inference with large Gaussian latent variable models in a student-trivial scenario.
For the case of perfect data-model matching, the knowledge of static order parameters derived from the replica method allows us to obtain efficient algorithmic updates.
arXiv Detail & Related papers (2020-01-14T17:22:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.