Learning High Order Feature Interactions with Fine Control Kernels
- URL: http://arxiv.org/abs/2002.03298v1
- Date: Sun, 9 Feb 2020 06:29:15 GMT
- Title: Learning High Order Feature Interactions with Fine Control Kernels
- Authors: Hristo Paskov, Alex Paskov, Robert West
- Abstract summary: We provide a methodology for learning sparse statistical models that use as features all possible multiplicative interactions.
We also introduce an algorithmic paradigm, the Fine Control Kernel framework, so named because it is based on Fenchel Duality.
- Score: 12.5433010409486
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We provide a methodology for learning sparse statistical models that use as
features all possible multiplicative interactions among an underlying atomic
set of features. While the resulting optimization problems are exponentially
sized, our methodology leads to algorithms that can often solve these problems
exactly or provide approximate solutions based on combining highly correlated
features. We also introduce an algorithmic paradigm, the Fine Control Kernel
framework, so named because it is based on Fenchel Duality and is reminiscent
of kernel methods. Its theory is tailored to large sparse learning problems,
and it leads to efficient feature screening rules for interactions. These rules
are inspired by the Apriori algorithm for market basket analysis -- which also
falls under the purview of Fine Control Kernels, and can be applied to a
plurality of learning problems including the Lasso and sparse matrix
estimation. Experiments on biomedical datasets demonstrate the efficacy of our
methodology in deriving algorithms that efficiently produce interactions models
which achieve state-of-the-art accuracy and are interpretable.
Related papers
- Efficient Differentiable Discovery of Causal Order [14.980926991441342]
Intersort is a score-based method to discover causal order of variables.
We reformulate Intersort using differentiable sorting and ranking techniques.
Our work opens the door to efficiently incorporating regularization for causal order into the training of differentiable models.
arXiv Detail & Related papers (2024-10-11T13:11:55Z) - Neural Algorithmic Reasoning Without Intermediate Supervision [21.852775399735005]
We focus on learning neural algorithmic reasoning only from the input-output pairs without appealing to the intermediate supervision.
We build a self-supervised objective that can regularise intermediate computations of the model without access to the algorithm trajectory.
We demonstrate that our approach is competitive to its trajectory-supervised counterpart on tasks from the CLRSic Algorithmic Reasoning Benchmark.
arXiv Detail & Related papers (2023-06-23T09:57:44Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - Multi-Task Learning with Prior Information [5.770309971945476]
We propose a multi-task learning framework, where we utilize prior knowledge about the relations between features.
We also impose a penalty on the coefficients changing for each specific feature to ensure related tasks have similar coefficients on common features shared among them.
arXiv Detail & Related papers (2023-01-04T12:48:05Z) - Stabilizing Q-learning with Linear Architectures for Provably Efficient
Learning [53.17258888552998]
This work proposes an exploration variant of the basic $Q$-learning protocol with linear function approximation.
We show that the performance of the algorithm degrades very gracefully under a novel and more permissive notion of approximation error.
arXiv Detail & Related papers (2022-06-01T23:26:51Z) - Practical, Provably-Correct Interactive Learning in the Realizable
Setting: The Power of True Believers [12.09273192079783]
We consider interactive learning in the realizable setting and develop a general framework to handle problems ranging from best arm identification to active classification.
We design novel computationally efficient algorithms for the realizable setting that match the minimax lower bound up to logarithmic factors.
arXiv Detail & Related papers (2021-11-09T02:33:36Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - A Two-stage Framework and Reinforcement Learning-based Optimization
Algorithms for Complex Scheduling Problems [54.61091936472494]
We develop a two-stage framework, in which reinforcement learning (RL) and traditional operations research (OR) algorithms are combined together.
The scheduling problem is solved in two stages, including a finite Markov decision process (MDP) and a mixed-integer programming process, respectively.
Results show that the proposed algorithms could stably and efficiently obtain satisfactory scheduling schemes for agile Earth observation satellite scheduling problems.
arXiv Detail & Related papers (2021-03-10T03:16:12Z) - Nonparametric Estimation of Heterogeneous Treatment Effects: From Theory
to Learning Algorithms [91.3755431537592]
We analyze four broad meta-learning strategies which rely on plug-in estimation and pseudo-outcome regression.
We highlight how this theoretical reasoning can be used to guide principled algorithm design and translate our analyses into practice.
arXiv Detail & Related papers (2021-01-26T17:11:40Z) - Learning to Actively Learn: A Robust Approach [22.75298609290053]
This work proposes a procedure for designing algorithms for adaptive data collection tasks like active learning and pure-exploration multi-armed bandits.
Our adaptive algorithm is learned via adversarial training over equivalence classes of problems derived from information theoretic lower bounds.
We perform synthetic experiments to justify the stability and effectiveness of the training procedure, and then evaluate the method on tasks derived from real data.
arXiv Detail & Related papers (2020-10-29T06:48:22Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
We introduce a parametrized representation of fixed size, which embeds and then aggregates elements from a given input set according to the optimal transport plan between the set and a trainable reference.
Our approach scales to large datasets and allows end-to-end training of the reference, while also providing a simple unsupervised learning mechanism with small computational cost.
arXiv Detail & Related papers (2020-06-22T08:35:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.