Streaming Submodular Maximization under a $k$-Set System Constraint
- URL: http://arxiv.org/abs/2002.03352v1
- Date: Sun, 9 Feb 2020 12:32:14 GMT
- Title: Streaming Submodular Maximization under a $k$-Set System Constraint
- Authors: Ran Haba, Ehsan Kazemi, Moran Feldman and Amin Karbasi
- Abstract summary: We propose a novel framework that converts streaming for monotone submodular into streaming for non-monotone submodular.
We also propose the first algorithm for monotone submodular streaming subject to $k$ible $k$-set system constraints.
- Score: 42.31117997337689
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a novel framework that converts streaming
algorithms for monotone submodular maximization into streaming algorithms for
non-monotone submodular maximization. This reduction readily leads to the
currently tightest deterministic approximation ratio for submodular
maximization subject to a $k$-matchoid constraint. Moreover, we propose the
first streaming algorithm for monotone submodular maximization subject to
$k$-extendible and $k$-set system constraints. Together with our proposed
reduction, we obtain $O(k\log k)$ and $O(k^2\log k)$ approximation ratio for
submodular maximization subject to the above constraints, respectively. We
extensively evaluate the empirical performance of our algorithm against the
existing work in a series of experiments including finding the maximum
independent set in randomly generated graphs, maximizing linear functions over
social networks, movie recommendation, Yelp location summarization, and Twitter
data summarization.
Related papers
- Fair Submodular Cover [18.37610521373708]
We present the study of Fair Submodular Cover (FSC), where given a ground set $U$, a monotone submodular function $f:2UtomathbbR_ge 0$, a threshold $tau$.
We first introduce discrete algorithms for FSC that achieve a bicriteria approximation ratio of $(frac1epsilon, 1-O(epsilon))$.
We then present a continuous algorithm that achieves a $(frac1epsilon, 1-O(epsilon))$-
arXiv Detail & Related papers (2024-07-05T18:37:09Z) - Dynamic Non-monotone Submodular Maximization [11.354502646593607]
We show a reduction from maximizing a non-monotone submodular function under the cardinality constraint $k$ to maximizing a monotone submodular function under the same constraint.
Our algorithms maintain an $(epsilon)$-approximate of the solution and use expected amortized $O(epsilon-3k3log3(n)log(k)$ queries per update.
arXiv Detail & Related papers (2023-11-07T03:20:02Z) - Randomized Greedy Learning for Non-monotone Stochastic Submodular
Maximization Under Full-bandit Feedback [98.29086113546045]
We investigate the problem of unconstrained multi-armed bandits with full-bandit feedback and rewards for submodularity.
We show that RGL empirically outperforms other full-bandit variants in submodular and non-submodular settings.
arXiv Detail & Related papers (2023-02-02T18:52:14Z) - Minimax Optimization with Smooth Algorithmic Adversaries [59.47122537182611]
We propose a new algorithm for the min-player against smooth algorithms deployed by an adversary.
Our algorithm is guaranteed to make monotonic progress having no limit cycles, and to find an appropriate number of gradient ascents.
arXiv Detail & Related papers (2021-06-02T22:03:36Z) - The Power of Subsampling in Submodular Maximization [51.629656762796564]
We show that this approach leads to optimal/state-of-the-art results despite being much simpler than existing methods.
We empirically demonstrate the effectiveness of our algorithms on video summarization, location summarization, and movie recommendation tasks.
arXiv Detail & Related papers (2021-04-06T20:25:57Z) - Revisiting Modified Greedy Algorithm for Monotone Submodular
Maximization with a Knapsack Constraint [75.85952446237599]
We show that a modified greedy algorithm can achieve an approximation factor of $0.305$.
We derive a data-dependent upper bound on the optimum.
It can also be used to significantly improve the efficiency of such algorithms as branch and bound.
arXiv Detail & Related papers (2020-08-12T15:40:21Z) - Fast and Private Submodular and $k$-Submodular Functions Maximization
with Matroid Constraints [27.070004659301162]
We study the problem of maximizing monotone submodular functions subject to matroid constraints in the framework of differential privacy.
We give the first $frac12$-approximation algorithm that preserves $k$submodular functions subject to matroid constraints.
arXiv Detail & Related papers (2020-06-28T23:18:58Z) - Submodular Maximization in Clean Linear Time [42.51873363778082]
We provide the first deterministic algorithm that achieves the tight $1-1/e$ approximation guarantee for submodularimation under a cardinality (size) constraint.
We show that when the cardinality allowed for a solution is constant, no algorithm making a sub-linear number of function evaluations can guarantee any constant ratio.
We extensively evaluate our algorithms on multiple real-life machine learning applications, including movie recommendation, location summarization, twitter text summarization and video summarization.
arXiv Detail & Related papers (2020-06-16T17:06:45Z) - Submodular Maximization Through Barrier Functions [32.41824379833395]
We introduce a novel technique for constrained submodular, inspired by barrier functions in continuous optimization.
We extensively evaluate our proposed algorithm over several real-world applications.
arXiv Detail & Related papers (2020-02-10T03:32:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.