Fair Submodular Cover
- URL: http://arxiv.org/abs/2407.04804v1
- Date: Fri, 5 Jul 2024 18:37:09 GMT
- Title: Fair Submodular Cover
- Authors: Wenjing Chen, Shuo Xing, Samson Zhou, Victoria G. Crawford,
- Abstract summary: We present the study of Fair Submodular Cover (FSC), where given a ground set $U$, a monotone submodular function $f:2UtomathbbR_ge 0$, a threshold $tau$.
We first introduce discrete algorithms for FSC that achieve a bicriteria approximation ratio of $(frac1epsilon, 1-O(epsilon))$.
We then present a continuous algorithm that achieves a $(frac1epsilon, 1-O(epsilon))$-
- Score: 18.37610521373708
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Submodular optimization is a fundamental problem with many applications in machine learning, often involving decision-making over datasets with sensitive attributes such as gender or age. In such settings, it is often desirable to produce a diverse solution set that is fairly distributed with respect to these attributes. Motivated by this, we initiate the study of Fair Submodular Cover (FSC), where given a ground set $U$, a monotone submodular function $f:2^U\to\mathbb{R}_{\ge 0}$, a threshold $\tau$, the goal is to find a balanced subset of $S$ with minimum cardinality such that $f(S)\ge\tau$. We first introduce discrete algorithms for FSC that achieve a bicriteria approximation ratio of $(\frac{1}{\epsilon}, 1-O(\epsilon))$. We then present a continuous algorithm that achieves a $(\ln\frac{1}{\epsilon}, 1-O(\epsilon))$-bicriteria approximation ratio, which matches the best approximation guarantee of submodular cover without a fairness constraint. Finally, we complement our theoretical results with a number of empirical evaluations that demonstrate the effectiveness of our algorithms on instances of maximum coverage.
Related papers
- Linear Submodular Maximization with Bandit Feedback [7.926559636438099]
We consider developing approximation algorithms for a submodular objective function $f:2UtomathbbR_geq 0$, where $f=sum_i=1dw_iF_i$.
It is assumed that we have value oracle access to the functions $F_i$, but the coefficients $w_i$ are unknown, and $f$ can only be accessed via noisy queries.
We show that our algorithms make vast improvements in terms of sample efficiency compared to algorithms that do not exploit the linear structure of $f
arXiv Detail & Related papers (2024-07-02T18:40:52Z) - Combinatorial Stochastic-Greedy Bandit [79.1700188160944]
We propose a novelgreedy bandit (SGB) algorithm for multi-armed bandit problems when no extra information other than the joint reward of the selected set of $n$ arms at each time $tin [T]$ is observed.
SGB adopts an optimized-explore-then-commit approach and is specifically designed for scenarios with a large set of base arms.
arXiv Detail & Related papers (2023-12-13T11:08:25Z) - Minimum Cost Adaptive Submodular Cover [4.680686256929023]
We consider the problem of minimum cost cover of adaptive-submodular functions.
We show that our algorithm simultaneously achieves a $(p+1)p+1cdot (ln Q+1)p$ approximation guarantee for all $pge 1$.
arXiv Detail & Related papers (2022-08-17T15:26:47Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
We investigate the problem of best identification in discounted linear Markov+Delta Decision in the fixed confidence setting under a generative model.
The lower bound as the solution of an intricate non- optimization program can be used as the starting point to devise such algorithms.
arXiv Detail & Related papers (2022-08-11T04:12:50Z) - Submodular + Concave [53.208470310734825]
It has been well established that first order optimization methods can converge to the maximal objective value of concave functions.
In this work, we initiate the determinant of the smooth functions convex body $$F(x) = G(x) +C(x)$.
This class of functions is an extension of both concave and continuous DR-submodular functions for which no guarantee is known.
arXiv Detail & Related papers (2021-06-09T01:59:55Z) - The Power of Subsampling in Submodular Maximization [51.629656762796564]
We show that this approach leads to optimal/state-of-the-art results despite being much simpler than existing methods.
We empirically demonstrate the effectiveness of our algorithms on video summarization, location summarization, and movie recommendation tasks.
arXiv Detail & Related papers (2021-04-06T20:25:57Z) - Revisiting Modified Greedy Algorithm for Monotone Submodular
Maximization with a Knapsack Constraint [75.85952446237599]
We show that a modified greedy algorithm can achieve an approximation factor of $0.305$.
We derive a data-dependent upper bound on the optimum.
It can also be used to significantly improve the efficiency of such algorithms as branch and bound.
arXiv Detail & Related papers (2020-08-12T15:40:21Z) - Submodular Maximization in Clean Linear Time [42.51873363778082]
We provide the first deterministic algorithm that achieves the tight $1-1/e$ approximation guarantee for submodularimation under a cardinality (size) constraint.
We show that when the cardinality allowed for a solution is constant, no algorithm making a sub-linear number of function evaluations can guarantee any constant ratio.
We extensively evaluate our algorithms on multiple real-life machine learning applications, including movie recommendation, location summarization, twitter text summarization and video summarization.
arXiv Detail & Related papers (2020-06-16T17:06:45Z) - Regularized Submodular Maximization at Scale [45.914693923126826]
Submodularity is inherently related to the notions of diversity, coverage, and representativeness.
We propose methods for maximizing a regularized submodular function $f = g ell$ expressed as the difference between a determinant submodular function $g$ and a modular function $ell$.
arXiv Detail & Related papers (2020-02-10T02:37:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.