Fair Correlation Clustering
- URL: http://arxiv.org/abs/2002.03508v1
- Date: Mon, 10 Feb 2020 02:59:17 GMT
- Title: Fair Correlation Clustering
- Authors: Saba Ahmadi, Sainyam Galhotra, Barna Saha, Roy Schwartz
- Abstract summary: We consider two variations of fairness constraint for the problem of correlation clustering where each node has a color.
We show the effectiveness of our algorithm to generate fair clusters by empirical evaluation on real world data sets.
- Score: 18.00619071013106
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper we study the problem of correlation clustering under fairness
constraints. In the classic correlation clustering problem, we are given a
complete graph where each edge is labeled positive or negative. The goal is to
obtain a clustering of the vertices that minimizes disagreements -- the number
of negative edges trapped inside a cluster plus positive edges between
different clusters.
We consider two variations of fairness constraint for the problem of
correlation clustering where each node has a color, and the goal is to form
clusters that do not over-represent vertices of any color.
The first variant aims to generate clusters with minimum disagreements, where
the distribution of a feature (e.g. gender) in each cluster is same as the
global distribution. For the case of two colors when the desired ratio of the
number of colors in each cluster is $1:p$, we get
$\mathcal{O}(p^2)$-approximation algorithm. Our algorithm could be extended to
the case of multiple colors. We prove this problem is NP-hard.
The second variant considers relative upper and lower bounds on the number of
nodes of any color in a cluster. The goal is to avoid violating upper and lower
bounds corresponding to each color in each cluster while minimizing the total
number of disagreements. Along with our theoretical results, we show the
effectiveness of our algorithm to generate fair clusters by empirical
evaluation on real world data sets.
Related papers
- Learning Uniform Clusters on Hypersphere for Deep Graph-level Clustering [25.350054742471816]
We propose a novel deep graph-level clustering method called Uniform Deep Graph Clustering (UDGC)
UDGC assigns instances evenly to different clusters and then scatters those clusters on unit hypersphere, leading to a more uniform cluster-level distribution and a slighter cluster collapse.
Our empirical study on eight well-known datasets demonstrates that UDGC significantly outperforms the state-of-the-art models.
arXiv Detail & Related papers (2023-11-23T12:08:20Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
We propose a new deep graph clustering method termed Reinforcement Graph Clustering.
In our proposed method, cluster number determination and unsupervised representation learning are unified into a uniform framework.
In order to conduct feedback actions, the clustering-oriented reward function is proposed to enhance the cohesion of the same clusters and separate the different clusters.
arXiv Detail & Related papers (2023-08-13T18:12:28Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
We devise an efficient algorithm that recovers clusters using the observed labels.
We present Instance-Adaptive Clustering (IAC), the first algorithm whose performance matches these lower bounds both in expectation and with high probability.
arXiv Detail & Related papers (2023-06-18T08:46:06Z) - Dink-Net: Neural Clustering on Large Graphs [59.10189693120368]
A deep graph clustering method (Dink-Net) is proposed with the idea of dilation and shrink.
By discriminating nodes, whether being corrupted by augmentations, representations are learned in a self-supervised manner.
The clustering distribution is optimized by minimizing the proposed cluster dilation loss and cluster shrink loss.
Compared to the runner-up, Dink-Net 9.62% achieves NMI improvement on the ogbn-papers100M dataset with 111 million nodes and 1.6 billion edges.
arXiv Detail & Related papers (2023-05-28T15:33:24Z) - ClusterFuG: Clustering Fully connected Graphs by Multicut [20.254912065749956]
In dense multicut, the clustering objective is given in a factorized form as inner products of node feature vectors.
We show how to rewrite classical greedy algorithms for multicut in our dense setting and how to modify them for greater efficiency and solution quality.
arXiv Detail & Related papers (2023-01-28T11:10:50Z) - Anomaly Clustering: Grouping Images into Coherent Clusters of Anomaly
Types [60.45942774425782]
We introduce anomaly clustering, whose goal is to group data into coherent clusters of anomaly types.
This is different from anomaly detection, whose goal is to divide anomalies from normal data.
We present a simple yet effective clustering framework using a patch-based pretrained deep embeddings and off-the-shelf clustering methods.
arXiv Detail & Related papers (2021-12-21T23:11:33Z) - Lattice-Based Methods Surpass Sum-of-Squares in Clustering [98.46302040220395]
Clustering is a fundamental primitive in unsupervised learning.
Recent work has established lower bounds against the class of low-degree methods.
We show that, perhaps surprisingly, this particular clustering model textitdoes not exhibit a statistical-to-computational gap.
arXiv Detail & Related papers (2021-12-07T18:50:17Z) - Sum-of-norms clustering does not separate nearby balls [49.1574468325115]
We show a continuous version of sum-of-norms clustering, where the dataset is replaced by a general measure.
We state and prove a local-global characterization of the clustering that seems to be new even in the case of discrete datapoints.
arXiv Detail & Related papers (2021-04-28T13:35:17Z) - K-expectiles clustering [0.0]
We propose a novel partitioning clustering algorithm based on expectiles.
We suggest two schemes: fixed $tau$ clustering, and adaptive $tau$ clustering.
arXiv Detail & Related papers (2021-03-16T21:14:56Z) - Spectral Clustering with Smooth Tiny Clusters [14.483043753721256]
We propose a novel clustering algorithm, which con-siders the smoothness of data for the first time.
Our key idea is to cluster tiny clusters, whose centers constitute smooth graphs.
Although in this paper, we singly focus on multi-scale situations, the idea of data smoothness can certainly be extended to any clustering algorithms.
arXiv Detail & Related papers (2020-09-10T05:21:20Z) - Exact Recovery of Mangled Clusters with Same-Cluster Queries [20.03712152278538]
We study the cluster recovery problem in the semi-supervised active clustering framework.
We design an algorithm that, given $n$ points to be partitioned into $k$ clusters, uses $O(k3 ln k ln n)$ oracle queries and $tildeO(kn + k3)$ time to recover the clustering with zero misclassification error.
arXiv Detail & Related papers (2020-06-08T15:27:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.