Random Smoothing Might be Unable to Certify $\ell_\infty$ Robustness for
High-Dimensional Images
- URL: http://arxiv.org/abs/2002.03517v3
- Date: Thu, 5 Mar 2020 17:16:41 GMT
- Title: Random Smoothing Might be Unable to Certify $\ell_\infty$ Robustness for
High-Dimensional Images
- Authors: Avrim Blum, Travis Dick, Naren Manoj, Hongyang Zhang
- Abstract summary: We show a hardness result for random smoothing to achieve adversarial robustness against attacks in the $ell_p$ ball of radius $epsilon$ when $p>2$.
- Score: 23.264535488112134
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We show a hardness result for random smoothing to achieve certified
adversarial robustness against attacks in the $\ell_p$ ball of radius
$\epsilon$ when $p>2$. Although random smoothing has been well understood for
the $\ell_2$ case using the Gaussian distribution, much remains unknown
concerning the existence of a noise distribution that works for the case of
$p>2$. This has been posed as an open problem by Cohen et al. (2019) and
includes many significant paradigms such as the $\ell_\infty$ threat model. In
this work, we show that any noise distribution $\mathcal{D}$ over
$\mathbb{R}^d$ that provides $\ell_p$ robustness for all base classifiers with
$p>2$ must satisfy
$\mathbb{E}\eta_i^2=\Omega(d^{1-2/p}\epsilon^2(1-\delta)/\delta^2)$ for 99% of
the features (pixels) of vector $\eta\sim\mathcal{D}$, where $\epsilon$ is the
robust radius and $\delta$ is the score gap between the highest-scored class
and the runner-up. Therefore, for high-dimensional images with pixel values
bounded in $[0,255]$, the required noise will eventually dominate the useful
information in the images, leading to trivial smoothed classifiers.
Related papers
- Optimal Sketching for Residual Error Estimation for Matrix and Vector Norms [50.15964512954274]
We study the problem of residual error estimation for matrix and vector norms using a linear sketch.
We demonstrate that this gives a substantial advantage empirically, for roughly the same sketch size and accuracy as in previous work.
We also show an $Omega(k2/pn1-2/p)$ lower bound for the sparse recovery problem, which is tight up to a $mathrmpoly(log n)$ factor.
arXiv Detail & Related papers (2024-08-16T02:33:07Z) - A Unified Framework for Uniform Signal Recovery in Nonlinear Generative
Compressed Sensing [68.80803866919123]
Under nonlinear measurements, most prior results are non-uniform, i.e., they hold with high probability for a fixed $mathbfx*$ rather than for all $mathbfx*$ simultaneously.
Our framework accommodates GCS with 1-bit/uniformly quantized observations and single index models as canonical examples.
We also develop a concentration inequality that produces tighter bounds for product processes whose index sets have low metric entropy.
arXiv Detail & Related papers (2023-09-25T17:54:19Z) - $\ell_p$-Regression in the Arbitrary Partition Model of Communication [59.89387020011663]
We consider the randomized communication complexity of the distributed $ell_p$-regression problem in the coordinator model.
For $p = 2$, i.e., least squares regression, we give the first optimal bound of $tildeTheta(sd2 + sd/epsilon)$ bits.
For $p in (1,2)$,we obtain an $tildeO(sd2/epsilon + sd/mathrmpoly(epsilon)$ upper bound.
arXiv Detail & Related papers (2023-07-11T08:51:53Z) - Fitting an ellipsoid to a quadratic number of random points [10.208117253395342]
We consider the problem $(mathrmP)$ of fitting $n$ standard Gaussian random vectors in $mathbbRd$ to the boundary of a centered ellipsoid, as $n, d to infty$.
This problem is conjectured to have a sharp feasibility transition: for any $varepsilon > 0$, if $n leq (1 - varepsilon) d2 / 4$ then $(mathrmP)$ has a solution with high probability.
arXiv Detail & Related papers (2023-07-03T17:46:23Z) - Mean Estimation in High-Dimensional Binary Markov Gaussian Mixture
Models [12.746888269949407]
We consider a high-dimensional mean estimation problem over a binary hidden Markov model.
We establish a nearly minimax optimal (up to logarithmic factors) estimation error rate, as a function of $|theta_*|,delta,d,n$.
arXiv Detail & Related papers (2022-06-06T09:34:04Z) - Unique Games hardness of Quantum Max-Cut, and a conjectured
vector-valued Borell's inequality [6.621324975749854]
We show that the noise stability of a function $f:mathbbRn to -1, 1$ is the expected value of $f(boldsymbolx) cdot f(boldsymboly)$.
We conjecture that the expected value of $langle f(boldsymbolx), f(boldsymboly)rangle$ is minimized by the function $f(x) = x_leq k / Vert x_leq k /
arXiv Detail & Related papers (2021-11-01T20:45:42Z) - Random matrices in service of ML footprint: ternary random features with
no performance loss [55.30329197651178]
We show that the eigenspectrum of $bf K$ is independent of the distribution of the i.i.d. entries of $bf w$.
We propose a novel random technique, called Ternary Random Feature (TRF)
The computation of the proposed random features requires no multiplication and a factor of $b$ less bits for storage compared to classical random features.
arXiv Detail & Related papers (2021-10-05T09:33:49Z) - Model-Free Reinforcement Learning: from Clipped Pseudo-Regret to Sample
Complexity [59.34067736545355]
Given an MDP with $S$ states, $A$ actions, the discount factor $gamma in (0,1)$, and an approximation threshold $epsilon > 0$, we provide a model-free algorithm to learn an $epsilon$-optimal policy.
For small enough $epsilon$, we show an improved algorithm with sample complexity.
arXiv Detail & Related papers (2020-06-06T13:34:41Z) - Learning Mixtures of Spherical Gaussians via Fourier Analysis [0.5381004207943596]
We find that a bound on the sample and computational complexity was previously unknown when $omega(1) leq d leq O(log k)$.
These authors also show that the sample of complexity of a random mixture of gaussians in a ball of radius $d$ in $d$ dimensions, when $d$ is $Theta(sqrtd)$ in $d$ dimensions, when $d$ is at least $poly(k, frac1delta)$.
arXiv Detail & Related papers (2020-04-13T08:06:29Z) - Curse of Dimensionality on Randomized Smoothing for Certifiable
Robustness [151.67113334248464]
We show that extending the smoothing technique to defend against other attack models can be challenging.
We present experimental results on CIFAR to validate our theory.
arXiv Detail & Related papers (2020-02-08T22:02:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.