$\ell_p$-Regression in the Arbitrary Partition Model of Communication
- URL: http://arxiv.org/abs/2307.05117v1
- Date: Tue, 11 Jul 2023 08:51:53 GMT
- Title: $\ell_p$-Regression in the Arbitrary Partition Model of Communication
- Authors: Yi Li, Honghao Lin, David P. Woodruff
- Abstract summary: We consider the randomized communication complexity of the distributed $ell_p$-regression problem in the coordinator model.
For $p = 2$, i.e., least squares regression, we give the first optimal bound of $tildeTheta(sd2 + sd/epsilon)$ bits.
For $p in (1,2)$,we obtain an $tildeO(sd2/epsilon + sd/mathrmpoly(epsilon)$ upper bound.
- Score: 59.89387020011663
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the randomized communication complexity of the distributed
$\ell_p$-regression problem in the coordinator model, for $p\in (0,2]$. In this
problem, there is a coordinator and $s$ servers. The $i$-th server receives
$A^i\in\{-M, -M+1, \ldots, M\}^{n\times d}$ and $b^i\in\{-M, -M+1, \ldots,
M\}^n$ and the coordinator would like to find a $(1+\epsilon)$-approximate
solution to $\min_{x\in\mathbb{R}^n} \|(\sum_i A^i)x - (\sum_i b^i)\|_p$. Here
$M \leq \mathrm{poly}(nd)$ for convenience. This model, where the data is
additively shared across servers, is commonly referred to as the arbitrary
partition model.
We obtain significantly improved bounds for this problem. For $p = 2$, i.e.,
least squares regression, we give the first optimal bound of
$\tilde{\Theta}(sd^2 + sd/\epsilon)$ bits.
For $p \in (1,2)$,we obtain an $\tilde{O}(sd^2/\epsilon +
sd/\mathrm{poly}(\epsilon))$ upper bound. Notably, for $d$ sufficiently large,
our leading order term only depends linearly on $1/\epsilon$ rather than
quadratically. We also show communication lower bounds of $\Omega(sd^2 +
sd/\epsilon^2)$ for $p\in (0,1]$ and $\Omega(sd^2 + sd/\epsilon)$ for $p\in
(1,2]$. Our bounds considerably improve previous bounds due to (Woodruff et al.
COLT, 2013) and (Vempala et al., SODA, 2020).
Related papers
- The Communication Complexity of Approximating Matrix Rank [50.6867896228563]
We show that this problem has randomized communication complexity $Omega(frac1kcdot n2log|mathbbF|)$.
As an application, we obtain an $Omega(frac1kcdot n2log|mathbbF|)$ space lower bound for any streaming algorithm with $k$ passes.
arXiv Detail & Related papers (2024-10-26T06:21:42Z) - Coresets for Multiple $\ell_p$ Regression [47.790126028106734]
We construct coresets of size $tilde O(varepsilon-2d)$ for $p2$ and $tilde O(varepsilon-pdp/2)$ for $p>2$.
For $1p2$, every matrix has a subset of $tilde O(varepsilon-1k)$ rows which spans a $(varepsilon-1k)$-approximately optimal $k$-dimensional subspace for $ell_p$ subspace approximation
arXiv Detail & Related papers (2024-06-04T15:50:42Z) - Near-Optimal Distributed Minimax Optimization under the Second-Order Similarity [22.615156512223763]
We propose variance- optimistic sliding (SVOGS) method, which takes the advantage of the finite-sum structure in the objective.
We prove $mathcal O(delta D2/varepsilon)$, communication complexity of $mathcal O(n+sqrtndelta D2/varepsilon)$, and local calls of $tildemathcal O(n+sqrtndelta+L)D2/varepsilon)$.
arXiv Detail & Related papers (2024-05-25T08:34:49Z) - On the Complexity of Finite-Sum Smooth Optimization under the
Polyak-{\L}ojasiewicz Condition [14.781921087738967]
This paper considers the optimization problem of the form $min_bf xinmathbb Rd f(bf x)triangleq frac1nsum_i=1n f_i(bf x)$, where $f(cdot)$ satisfies the Polyak--Lojasiewicz (PL) condition with parameter $mu$ and $f_i(cdot)_i=1n$ is $L$-mean-squared smooth.
arXiv Detail & Related papers (2024-02-04T17:14:53Z) - A spectral least-squares-type method for heavy-tailed corrupted
regression with unknown covariance \& heterogeneous noise [2.019622939313173]
We revisit heavy-tailed corrupted least-squares linear regression assuming to have a corrupted $n$-sized label-feature sample of at most $epsilon n$ arbitrary outliers.
We propose a near-optimal computationally tractable estimator, based on the power method, assuming no knowledge on $(Sigma,Xi) nor the operator norm of $Xi$.
arXiv Detail & Related papers (2022-09-06T23:37:31Z) - Low-Rank Approximation with $1/\epsilon^{1/3}$ Matrix-Vector Products [58.05771390012827]
We study iterative methods based on Krylov subspaces for low-rank approximation under any Schatten-$p$ norm.
Our main result is an algorithm that uses only $tildeO(k/sqrtepsilon)$ matrix-vector products.
arXiv Detail & Related papers (2022-02-10T16:10:41Z) - Active Sampling for Linear Regression Beyond the $\ell_2$ Norm [70.49273459706546]
We study active sampling algorithms for linear regression, which aim to query only a small number of entries of a target vector.
We show that this dependence on $d$ is optimal, up to logarithmic factors.
We also provide the first total sensitivity upper bound $O(dmax1,p/2log2 n)$ for loss functions with at most degree $p$ growth.
arXiv Detail & Related papers (2021-11-09T00:20:01Z) - The planted matching problem: Sharp threshold and infinite-order phase
transition [25.41713098167692]
We study the problem of reconstructing a perfect matching $M*$ hidden in a randomly weighted $ntimes n$ bipartite graph.
We show that if $sqrtd B(mathcalP,mathcalQ) ge 1+epsilon$ for an arbitrarily small constant $epsilon>0$, the reconstruction error for any estimator is shown to be bounded away from $0$.
arXiv Detail & Related papers (2021-03-17T00:59:33Z) - On the Complexity of Minimizing Convex Finite Sums Without Using the
Indices of the Individual Functions [62.01594253618911]
We exploit the finite noise structure of finite sums to derive a matching $O(n2)$-upper bound under the global oracle model.
Following a similar approach, we propose a novel adaptation of SVRG which is both emphcompatible with oracles, and achieves complexity bounds of $tildeO(n2+nsqrtL/mu)log (1/epsilon)$ and $O(nsqrtL/epsilon)$, for $mu>0$ and $mu=0$
arXiv Detail & Related papers (2020-02-09T03:39:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.