A Spike in Performance: Training Hybrid-Spiking Neural Networks with
Quantized Activation Functions
- URL: http://arxiv.org/abs/2002.03553v2
- Date: Mon, 1 Mar 2021 22:02:28 GMT
- Title: A Spike in Performance: Training Hybrid-Spiking Neural Networks with
Quantized Activation Functions
- Authors: Aaron R. Voelker and Daniel Rasmussen and Chris Eliasmith
- Abstract summary: Spiking Neural Network (SNN) is a promising approach to energy-efficient computing.
We show how to maintain state-of-the-art accuracy when converting a non-spiking network into an SNN.
- Score: 6.574517227976925
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The machine learning community has become increasingly interested in the
energy efficiency of neural networks. The Spiking Neural Network (SNN) is a
promising approach to energy-efficient computing, since its activation levels
are quantized into temporally sparse, one-bit values (i.e., "spike" events),
which additionally converts the sum over weight-activity products into a simple
addition of weights (one weight for each spike). However, the goal of
maintaining state-of-the-art (SotA) accuracy when converting a non-spiking
network into an SNN has remained an elusive challenge, primarily due to spikes
having only a single bit of precision. Adopting tools from signal processing,
we cast neural activation functions as quantizers with temporally-diffused
error, and then train networks while smoothly interpolating between the
non-spiking and spiking regimes. We apply this technique to the Legendre Memory
Unit (LMU) to obtain the first known example of a hybrid SNN outperforming SotA
recurrent architectures -- including the LSTM, GRU, and NRU -- in accuracy,
while reducing activities to at most 3.74 bits on average with 1.26 significant
bits multiplying each weight. We discuss how these methods can significantly
improve the energy efficiency of neural networks.
Related papers
- Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
This paper explores the potential of conversion-based neuromorphic algorithms for highly accurate and energy-efficient single-snapshot multidimensional harmonic retrieval.
A novel method for converting the complex-valued convolutional layers and activations into spiking neural networks (SNNs) is developed.
The converted SNNs achieve almost five-fold power efficiency at moderate performance loss compared to the original CNNs.
arXiv Detail & Related papers (2024-12-05T09:41:33Z) - Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
Neuromorphic computing uses spiking neural networks (SNNs) to perform inference tasks.
embedding a small payload within each spike exchanged between spiking neurons can enhance inference accuracy without increasing energy consumption.
split computing - where an SNN is partitioned across two devices - is a promising solution.
This paper presents the first comprehensive study of a neuromorphic wireless split computing architecture that employs multi-level SNNs.
arXiv Detail & Related papers (2024-11-07T14:08:35Z) - Hyperspectral Image Classification Based on Faster Residual Multi-branch Spiking Neural Network [6.166929138912052]
This paper builds a spiking neural network (SNN) based on the leaky integrate-and-fire (LIF) neuron model for HSI classification tasks.
SNN-SWMR requires a time step reduction of about 84%, training time, and testing time reduction of about 63% and 70% at the same accuracy.
arXiv Detail & Related papers (2024-09-18T00:51:01Z) - SynA-ResNet: Spike-driven ResNet Achieved through OR Residual Connection [10.702093960098104]
Spiking Neural Networks (SNNs) have garnered substantial attention in brain-like computing for their biological fidelity and the capacity to execute energy-efficient spike-driven operations.
We propose a novel training paradigm that first accumulates a large amount of redundant information through OR Residual Connection (ORRC)
We then filters out the redundant information using the Synergistic Attention (SynA) module, which promotes feature extraction in the backbone while suppressing the influence of noise and useless features in the shortcuts.
arXiv Detail & Related papers (2023-11-11T13:36:27Z) - Low Precision Quantization-aware Training in Spiking Neural Networks
with Differentiable Quantization Function [0.5046831208137847]
This work aims to bridge the gap between recent progress in quantized neural networks and spiking neural networks.
It presents an extensive study on the performance of the quantization function, represented as a linear combination of sigmoid functions.
The presented quantization function demonstrates the state-of-the-art performance on four popular benchmarks.
arXiv Detail & Related papers (2023-05-30T09:42:05Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - A Faster Approach to Spiking Deep Convolutional Neural Networks [0.0]
Spiking neural networks (SNNs) have closer dynamics to the brain than current deep neural networks.
We propose a network structure based on previous work to improve network runtime and accuracy.
arXiv Detail & Related papers (2022-10-31T16:13:15Z) - Energy Efficient Hardware Acceleration of Neural Networks with
Power-of-Two Quantisation [0.0]
We show that a hardware neural network accelerator with PoT weights implemented on the Zynq UltraScale + MPSoC ZCU104 FPGA can be at least $1.4x$ more energy efficient than the uniform quantisation version.
arXiv Detail & Related papers (2022-09-30T06:33:40Z) - BiTAT: Neural Network Binarization with Task-dependent Aggregated
Transformation [116.26521375592759]
Quantization aims to transform high-precision weights and activations of a given neural network into low-precision weights/activations for reduced memory usage and computation.
Extreme quantization (1-bit weight/1-bit activations) of compactly-designed backbone architectures results in severe performance degeneration.
This paper proposes a novel Quantization-Aware Training (QAT) method that can effectively alleviate performance degeneration.
arXiv Detail & Related papers (2022-07-04T13:25:49Z) - ActNN: Reducing Training Memory Footprint via 2-Bit Activation
Compressed Training [68.63354877166756]
ActNN is a memory-efficient training framework that stores randomly quantized activations for back propagation.
ActNN reduces the memory footprint of the activation by 12x, and it enables training with a 6.6x to 14x larger batch size.
arXiv Detail & Related papers (2021-04-29T05:50:54Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.