Hyperspectral Image Classification Based on Faster Residual Multi-branch Spiking Neural Network
- URL: http://arxiv.org/abs/2409.11619v1
- Date: Wed, 18 Sep 2024 00:51:01 GMT
- Title: Hyperspectral Image Classification Based on Faster Residual Multi-branch Spiking Neural Network
- Authors: Yang Liu, Yahui Li, Rui Li, Liming Zhou, Lanxue Dang, Huiyu Mu, Qiang Ge,
- Abstract summary: This paper builds a spiking neural network (SNN) based on the leaky integrate-and-fire (LIF) neuron model for HSI classification tasks.
SNN-SWMR requires a time step reduction of about 84%, training time, and testing time reduction of about 63% and 70% at the same accuracy.
- Score: 6.166929138912052
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Convolutional neural network (CNN) performs well in Hyperspectral Image (HSI) classification tasks, but its high energy consumption and complex network structure make it difficult to directly apply it to edge computing devices. At present, spiking neural networks (SNN) have developed rapidly in HSI classification tasks due to their low energy consumption and event driven characteristics. However, it usually requires a longer time step to achieve optimal accuracy. In response to the above problems, this paper builds a spiking neural network (SNN-SWMR) based on the leaky integrate-and-fire (LIF) neuron model for HSI classification tasks. The network uses the spiking width mixed residual (SWMR) module as the basic unit to perform feature extraction operations. The spiking width mixed residual module is composed of spiking mixed convolution (SMC), which can effectively extract spatial-spectral features. Secondly, this paper designs a simple and efficient arcsine approximate derivative (AAD), which solves the non-differentiable problem of spike firing by fitting the Dirac function. Through AAD, we can directly train supervised spike neural networks. Finally, this paper conducts comparative experiments with multiple advanced HSI classification algorithms based on spiking neural networks on six public hyperspectral data sets. Experimental results show that the AAD function has strong robustness and a good fitting effect. Meanwhile, compared with other algorithms, SNN-SWMR requires a time step reduction of about 84%, training time, and testing time reduction of about 63% and 70% at the same accuracy. This study solves the key problem of SNN based HSI classification algorithms, which has important practical significance for promoting the practical application of HSI classification algorithms in edge devices such as spaceborne and airborne devices.
Related papers
- Unveiling the Power of Sparse Neural Networks for Feature Selection [60.50319755984697]
Sparse Neural Networks (SNNs) have emerged as powerful tools for efficient feature selection.
We show that SNNs trained with dynamic sparse training (DST) algorithms can achieve, on average, more than $50%$ memory and $55%$ FLOPs reduction.
Our findings show that feature selection with SNNs trained with DST algorithms can achieve, on average, more than $50%$ memory and $55%$ FLOPs reduction.
arXiv Detail & Related papers (2024-08-08T16:48:33Z) - EventRPG: Event Data Augmentation with Relevance Propagation Guidance [25.899827299880577]
Overfitting is a critical problem in event-based classification tasks for Spiking Neural Network (SNN)
Data augmentation is a simple but efficient method to alleviate overfitting and improve the generalization ability of neural networks.
We propose EventRPG, which leverages relevance propagation on the spiking neural network for more efficient augmentation.
arXiv Detail & Related papers (2024-03-14T10:52:45Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - SA-CNN: Application to text categorization issues using simulated
annealing-based convolutional neural network optimization [0.0]
Convolutional neural networks (CNNs) are a representative class of deep learning algorithms.
We introduce SA-CNN neural networks for text classification tasks based on Text-CNN neural networks.
arXiv Detail & Related papers (2023-03-13T14:27:34Z) - Deep Learning Architectures for FSCV, a Comparison [0.0]
Suitability is determined by the predictive performance in the "out-of-probe" case, the response to artificially induced electrical noise, and the ability to predict when the model will be errant for a given probe.
The InceptionTime architecture, a deep convolutional neural network, has the best absolute predictive performance of the models tested but was more susceptible to noise.
A naive multilayer perceptron architecture had the second lowest prediction error and was less affected by the artificial noise, suggesting that convolutions may not be as important for this task as one might suspect.
arXiv Detail & Related papers (2022-12-05T00:20:10Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
This paper explores a novel frequency-aware dynamic network for dividing the input into multiple parts according to its coefficients in the discrete cosine transform (DCT) domain.
In practice, the high-frequency part will be processed using expensive operations and the lower-frequency part is assigned with cheap operations to relieve the computation burden.
Experiments conducted on benchmark SISR models and datasets show that the frequency-aware dynamic network can be employed for various SISR neural architectures.
arXiv Detail & Related papers (2021-03-15T12:54:26Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z) - Effective AER Object Classification Using Segmented
Probability-Maximization Learning in Spiking Neural Networks [23.44400682585093]
Address event representation (AER) cameras have attracted more attention due to the advantages of high temporal resolution and low power consumption.
We propose an AER object classification model using a novel segmented probability-maximization (SPA) learning algorithm.
arXiv Detail & Related papers (2020-02-14T04:10:58Z) - A Spike in Performance: Training Hybrid-Spiking Neural Networks with
Quantized Activation Functions [6.574517227976925]
Spiking Neural Network (SNN) is a promising approach to energy-efficient computing.
We show how to maintain state-of-the-art accuracy when converting a non-spiking network into an SNN.
arXiv Detail & Related papers (2020-02-10T05:24:27Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
Deep neural networks achieve state-of-the-art performance for a range of classification and inference tasks.
The use of gradient combined nonvolutionity renders learning susceptible to novel problems.
We propose fusing neighboring layers of deeper networks that are trained with random variables.
arXiv Detail & Related papers (2020-01-28T18:25:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.