Autonomous Planning Based on Spatial Concepts to Tidy Up Home
Environments with Service Robots
- URL: http://arxiv.org/abs/2002.03671v2
- Date: Wed, 10 Feb 2021 08:16:09 GMT
- Title: Autonomous Planning Based on Spatial Concepts to Tidy Up Home
Environments with Service Robots
- Authors: Akira Taniguchi, Shota Isobe, Lotfi El Hafi, Yoshinobu Hagiwara,
Tadahiro Taniguchi
- Abstract summary: We propose a novel planning method that can efficiently estimate the order and positions of the objects to be tidied up by learning the parameters of a probabilistic generative model.
The model allows a robot to learn the distributions of the co-occurrence probability of the objects and places to tidy up using the multimodal sensor information collected in a tidied environment.
We evaluate the effectiveness of the proposed method by an experimental simulation that reproduces the conditions of the Tidy Up Here task of the World Robot Summit 2018 international robotics competition.
- Score: 5.739787445246959
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tidy-up tasks by service robots in home environments are challenging in
robotics applications because they involve various interactions with the
environment. In particular, robots are required not only to grasp, move, and
release various home objects but also to plan the order and positions for
placing the objects. In this paper, we propose a novel planning method that can
efficiently estimate the order and positions of the objects to be tidied up by
learning the parameters of a probabilistic generative model. The model allows a
robot to learn the distributions of the co-occurrence probability of the
objects and places to tidy up using the multimodal sensor information collected
in a tidied environment. Additionally, we develop an autonomous robotic system
to perform the tidy-up operation. We evaluate the effectiveness of the proposed
method by an experimental simulation that reproduces the conditions of the Tidy
Up Here task of the World Robot Summit 2018 international robotics competition.
The simulation results show that the proposed method enables the robot to
successively tidy up several objects and achieves the best task score among the
considered baseline tidy-up methods.
Related papers
- Learning Object Properties Using Robot Proprioception via Differentiable Robot-Object Interaction [52.12746368727368]
Differentiable simulation has become a powerful tool for system identification.
Our approach calibrates object properties by using information from the robot, without relying on data from the object itself.
We demonstrate the effectiveness of our method on a low-cost robotic platform.
arXiv Detail & Related papers (2024-10-04T20:48:38Z) - Autonomous Behavior Planning For Humanoid Loco-manipulation Through Grounded Language Model [6.9268843428933025]
Large language models (LLMs) have demonstrated powerful planning and reasoning capabilities for comprehension and processing of semantic information.
We propose a novel language-model based framework that enables robots to autonomously plan behaviors and low-level execution under given textual instructions.
arXiv Detail & Related papers (2024-08-15T17:33:32Z) - Planning Robot Placement for Object Grasping [5.327052729563043]
When performing manipulation-based activities such as picking objects, a mobile robot needs to position its base at a location that supports successful execution.
To address this problem, prominent approaches typically rely on costly grasp planners to provide grasp poses for a target object.
We propose instead to first find robot placements that would not result in collision with the environment, then evaluate them to find the best placement candidate.
arXiv Detail & Related papers (2024-05-26T20:57:32Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
This paper presents textbfRobotScript, a platform for a deployable robot manipulation pipeline powered by code generation.
We also present a benchmark for a code generation benchmark for robot manipulation tasks in free-form natural language.
We demonstrate the adaptability of our code generation framework across multiple robot embodiments, including the Franka and UR5 robot arms.
arXiv Detail & Related papers (2024-02-22T15:12:00Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
Large Language Models (LLMs) have achieved impressive results in creating robotic agents for performing open vocabulary tasks.
We present an interactive planning technique for partially observable tasks using LLMs.
arXiv Detail & Related papers (2023-12-11T22:54:44Z) - RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation [68.70755196744533]
RoboGen is a generative robotic agent that automatically learns diverse robotic skills at scale via generative simulation.
Our work attempts to extract the extensive and versatile knowledge embedded in large-scale models and transfer them to the field of robotics.
arXiv Detail & Related papers (2023-11-02T17:59:21Z) - Active Exploration for Robotic Manipulation [40.39182660794481]
This paper proposes a model-based active exploration approach that enables efficient learning in sparse-reward robotic manipulation tasks.
We evaluate our proposed algorithm in simulation and on a real robot, trained from scratch with our method.
arXiv Detail & Related papers (2022-10-23T18:07:51Z) - Summarizing a virtual robot's past actions in natural language [0.3553493344868413]
We show how a popular dataset that matches robot actions with natural language descriptions designed for an instruction following task can be repurposed to serve as a training ground for robot action summarization work.
We propose and test several methods of learning to generate such summaries, starting from either egocentric video frames of the robot taking actions or intermediate text representations of the actions used by an automatic planner.
arXiv Detail & Related papers (2022-03-13T15:00:46Z) - Bayesian Meta-Learning for Few-Shot Policy Adaptation Across Robotic
Platforms [60.59764170868101]
Reinforcement learning methods can achieve significant performance but require a large amount of training data collected on the same robotic platform.
We formulate it as a few-shot meta-learning problem where the goal is to find a model that captures the common structure shared across different robotic platforms.
We experimentally evaluate our framework on a simulated reaching and a real-robot picking task using 400 simulated robots.
arXiv Detail & Related papers (2021-03-05T14:16:20Z) - Towards Multi-Robot Task-Motion Planning for Navigation in Belief Space [1.4824891788575418]
We present an integrated multi-robot task-motion planning framework for navigation in knowledge-intensive domains.
In particular, we consider a distributed multi-robot setting incorporating mutual observations between the robots.
The framework is intended for motion planning under motion and sensing uncertainty, which is formally known as belief space planning.
arXiv Detail & Related papers (2020-10-01T06:45:17Z) - SAPIEN: A SimulAted Part-based Interactive ENvironment [77.4739790629284]
SAPIEN is a realistic and physics-rich simulated environment that hosts a large-scale set for articulated objects.
We evaluate state-of-the-art vision algorithms for part detection and motion attribute recognition as well as demonstrate robotic interaction tasks.
arXiv Detail & Related papers (2020-03-19T00:11:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.